MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemg Structured version   Visualization version   Unicode version

Theorem efgredlemg 18155
Description: Lemma for efgred 18161. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgredlem.1  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
efgredlem.2  |-  ( ph  ->  A  e.  dom  S
)
efgredlem.3  |-  ( ph  ->  B  e.  dom  S
)
efgredlem.4  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
efgredlem.5  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
efgredlemb.k  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
efgredlemb.l  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
efgredlemb.p  |-  ( ph  ->  P  e.  ( 0 ... ( # `  ( A `  K )
) ) )
efgredlemb.q  |-  ( ph  ->  Q  e.  ( 0 ... ( # `  ( B `  L )
) ) )
efgredlemb.u  |-  ( ph  ->  U  e.  ( I  X.  2o ) )
efgredlemb.v  |-  ( ph  ->  V  e.  ( I  X.  2o ) )
efgredlemb.6  |-  ( ph  ->  ( S `  A
)  =  ( P ( T `  ( A `  K )
) U ) )
efgredlemb.7  |-  ( ph  ->  ( S `  B
)  =  ( Q ( T `  ( B `  L )
) V ) )
Assertion
Ref Expression
efgredlemg  |-  ( ph  ->  ( # `  ( A `  K )
)  =  ( # `  ( B `  L
) ) )
Distinct variable groups:    a, b, A    y, a, z, b    L, a, b    K, a, b    t, n, v, w, y, z, P   
m, a, n, t, v, w, x, M, b    U, n, v, w, y, z    k, a, T, b, m, t, x    n, V, v, w, y, z    Q, n, t, v, w, y, z    W, a, b    k, n, v, w, y, z, W, m, t, x    .~ , a, b, m, t, x, y, z    B, a, b    S, a, b   
I, a, b, m, n, t, v, w, x, y, z    D, a, b, m, t
Allowed substitution hints:    ph( x, y, z, w, v, t, k, m, n, a, b)    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    P( x, k, m, a, b)    Q( x, k, m, a, b)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    U( x, t, k, m, a, b)    I( k)    K( x, y, z, w, v, t, k, m, n)    L( x, y, z, w, v, t, k, m, n)    M( y, z, k)    V( x, t, k, m, a, b)

Proof of Theorem efgredlemg
StepHypRef Expression
1 efgval.w . . . . . 6  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 fviss 6256 . . . . . 6  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
31, 2eqsstri 3635 . . . . 5  |-  W  C_ Word  ( I  X.  2o )
4 efgval.r . . . . . . 7  |-  .~  =  ( ~FG  `  I )
5 efgval2.m . . . . . . 7  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
6 efgval2.t . . . . . . 7  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
7 efgred.d . . . . . . 7  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
8 efgred.s . . . . . . 7  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
9 efgredlem.1 . . . . . . 7  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
10 efgredlem.2 . . . . . . 7  |-  ( ph  ->  A  e.  dom  S
)
11 efgredlem.3 . . . . . . 7  |-  ( ph  ->  B  e.  dom  S
)
12 efgredlem.4 . . . . . . 7  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
13 efgredlem.5 . . . . . . 7  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
14 efgredlemb.k . . . . . . 7  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
15 efgredlemb.l . . . . . . 7  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
161, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15efgredlemf 18154 . . . . . 6  |-  ( ph  ->  ( ( A `  K )  e.  W  /\  ( B `  L
)  e.  W ) )
1716simpld 475 . . . . 5  |-  ( ph  ->  ( A `  K
)  e.  W )
183, 17sseldi 3601 . . . 4  |-  ( ph  ->  ( A `  K
)  e. Word  ( I  X.  2o ) )
19 lencl 13324 . . . 4  |-  ( ( A `  K )  e. Word  ( I  X.  2o )  ->  ( # `  ( A `  K
) )  e.  NN0 )
2018, 19syl 17 . . 3  |-  ( ph  ->  ( # `  ( A `  K )
)  e.  NN0 )
2120nn0cnd 11353 . 2  |-  ( ph  ->  ( # `  ( A `  K )
)  e.  CC )
2216simprd 479 . . . . 5  |-  ( ph  ->  ( B `  L
)  e.  W )
233, 22sseldi 3601 . . . 4  |-  ( ph  ->  ( B `  L
)  e. Word  ( I  X.  2o ) )
24 lencl 13324 . . . 4  |-  ( ( B `  L )  e. Word  ( I  X.  2o )  ->  ( # `  ( B `  L
) )  e.  NN0 )
2523, 24syl 17 . . 3  |-  ( ph  ->  ( # `  ( B `  L )
)  e.  NN0 )
2625nn0cnd 11353 . 2  |-  ( ph  ->  ( # `  ( B `  L )
)  e.  CC )
27 2cnd 11093 . 2  |-  ( ph  ->  2  e.  CC )
281, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13efgredlema 18153 . . . . . . 7  |-  ( ph  ->  ( ( ( # `  A )  -  1 )  e.  NN  /\  ( ( # `  B
)  -  1 )  e.  NN ) )
2928simpld 475 . . . . . 6  |-  ( ph  ->  ( ( # `  A
)  -  1 )  e.  NN )
301, 4, 5, 6, 7, 8efgsdmi 18145 . . . . . 6  |-  ( ( A  e.  dom  S  /\  ( ( # `  A
)  -  1 )  e.  NN )  -> 
( S `  A
)  e.  ran  ( T `  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) ) ) )
3110, 29, 30syl2anc 693 . . . . 5  |-  ( ph  ->  ( S `  A
)  e.  ran  ( T `  ( A `  ( ( ( # `  A )  -  1 )  -  1 ) ) ) )
3214fveq2i 6194 . . . . . . 7  |-  ( A `
 K )  =  ( A `  (
( ( # `  A
)  -  1 )  -  1 ) )
3332fveq2i 6194 . . . . . 6  |-  ( T `
 ( A `  K ) )  =  ( T `  ( A `  ( (
( # `  A )  -  1 )  - 
1 ) ) )
3433rneqi 5352 . . . . 5  |-  ran  ( T `  ( A `  K ) )  =  ran  ( T `  ( A `  ( ( ( # `  A
)  -  1 )  -  1 ) ) )
3531, 34syl6eleqr 2712 . . . 4  |-  ( ph  ->  ( S `  A
)  e.  ran  ( T `  ( A `  K ) ) )
361, 4, 5, 6efgtlen 18139 . . . 4  |-  ( ( ( A `  K
)  e.  W  /\  ( S `  A )  e.  ran  ( T `
 ( A `  K ) ) )  ->  ( # `  ( S `  A )
)  =  ( (
# `  ( A `  K ) )  +  2 ) )
3717, 35, 36syl2anc 693 . . 3  |-  ( ph  ->  ( # `  ( S `  A )
)  =  ( (
# `  ( A `  K ) )  +  2 ) )
3828simprd 479 . . . . . . 7  |-  ( ph  ->  ( ( # `  B
)  -  1 )  e.  NN )
391, 4, 5, 6, 7, 8efgsdmi 18145 . . . . . . 7  |-  ( ( B  e.  dom  S  /\  ( ( # `  B
)  -  1 )  e.  NN )  -> 
( S `  B
)  e.  ran  ( T `  ( B `  ( ( ( # `  B )  -  1 )  -  1 ) ) ) )
4011, 38, 39syl2anc 693 . . . . . 6  |-  ( ph  ->  ( S `  B
)  e.  ran  ( T `  ( B `  ( ( ( # `  B )  -  1 )  -  1 ) ) ) )
4112, 40eqeltrd 2701 . . . . 5  |-  ( ph  ->  ( S `  A
)  e.  ran  ( T `  ( B `  ( ( ( # `  B )  -  1 )  -  1 ) ) ) )
4215fveq2i 6194 . . . . . . 7  |-  ( B `
 L )  =  ( B `  (
( ( # `  B
)  -  1 )  -  1 ) )
4342fveq2i 6194 . . . . . 6  |-  ( T `
 ( B `  L ) )  =  ( T `  ( B `  ( (
( # `  B )  -  1 )  - 
1 ) ) )
4443rneqi 5352 . . . . 5  |-  ran  ( T `  ( B `  L ) )  =  ran  ( T `  ( B `  ( ( ( # `  B
)  -  1 )  -  1 ) ) )
4541, 44syl6eleqr 2712 . . . 4  |-  ( ph  ->  ( S `  A
)  e.  ran  ( T `  ( B `  L ) ) )
461, 4, 5, 6efgtlen 18139 . . . 4  |-  ( ( ( B `  L
)  e.  W  /\  ( S `  A )  e.  ran  ( T `
 ( B `  L ) ) )  ->  ( # `  ( S `  A )
)  =  ( (
# `  ( B `  L ) )  +  2 ) )
4722, 45, 46syl2anc 693 . . 3  |-  ( ph  ->  ( # `  ( S `  A )
)  =  ( (
# `  ( B `  L ) )  +  2 ) )
4837, 47eqtr3d 2658 . 2  |-  ( ph  ->  ( ( # `  ( A `  K )
)  +  2 )  =  ( ( # `  ( B `  L
) )  +  2 ) )
4921, 26, 27, 48addcan2ad 10242 1  |-  ( ph  ->  ( # `  ( A `  K )
)  =  ( # `  ( B `  L
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593
This theorem is referenced by:  efgredleme  18156
  Copyright terms: Public domain W3C validator