![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgsdmi | Structured version Visualization version GIF version |
Description: Property of the last link in the chain of extensions. (Contributed by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) |
Ref | Expression |
---|---|
efgsdmi | ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((#‘𝐹) − 1) − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
2 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . 4 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
4 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . 4 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . 4 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1))) | |
7 | 1, 2, 3, 4, 5, 6 | efgsval 18144 | . . 3 ⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((#‘𝐹) − 1))) |
8 | 7 | adantr 481 | . 2 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) = (𝐹‘((#‘𝐹) − 1))) |
9 | simpr 477 | . . . . . . 7 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → ((#‘𝐹) − 1) ∈ ℕ) | |
10 | nnuz 11723 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
11 | 9, 10 | syl6eleq 2711 | . . . . . 6 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → ((#‘𝐹) − 1) ∈ (ℤ≥‘1)) |
12 | eluzfz1 12348 | . . . . . 6 ⊢ (((#‘𝐹) − 1) ∈ (ℤ≥‘1) → 1 ∈ (1...((#‘𝐹) − 1))) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1...((#‘𝐹) − 1))) |
14 | 1, 2, 3, 4, 5, 6 | efgsdm 18143 | . . . . . . . . 9 ⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
15 | 14 | simp1bi 1076 | . . . . . . . 8 ⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
16 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
17 | 16 | eldifad 3586 | . . . . . 6 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → 𝐹 ∈ Word 𝑊) |
18 | lencl 13324 | . . . . . 6 ⊢ (𝐹 ∈ Word 𝑊 → (#‘𝐹) ∈ ℕ0) | |
19 | nn0z 11400 | . . . . . 6 ⊢ ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ ℤ) | |
20 | fzoval 12471 | . . . . . 6 ⊢ ((#‘𝐹) ∈ ℤ → (1..^(#‘𝐹)) = (1...((#‘𝐹) − 1))) | |
21 | 17, 18, 19, 20 | 4syl 19 | . . . . 5 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → (1..^(#‘𝐹)) = (1...((#‘𝐹) − 1))) |
22 | 13, 21 | eleqtrrd 2704 | . . . 4 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → 1 ∈ (1..^(#‘𝐹))) |
23 | fzoend 12559 | . . . 4 ⊢ (1 ∈ (1..^(#‘𝐹)) → ((#‘𝐹) − 1) ∈ (1..^(#‘𝐹))) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → ((#‘𝐹) − 1) ∈ (1..^(#‘𝐹))) |
25 | 14 | simp3bi 1078 | . . . 4 ⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
26 | 25 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → ∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
27 | fveq2 6191 | . . . . 5 ⊢ (𝑖 = ((#‘𝐹) − 1) → (𝐹‘𝑖) = (𝐹‘((#‘𝐹) − 1))) | |
28 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑖 = ((#‘𝐹) − 1) → (𝑖 − 1) = (((#‘𝐹) − 1) − 1)) | |
29 | 28 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑖 = ((#‘𝐹) − 1) → (𝐹‘(𝑖 − 1)) = (𝐹‘(((#‘𝐹) − 1) − 1))) |
30 | 29 | fveq2d 6195 | . . . . . 6 ⊢ (𝑖 = ((#‘𝐹) − 1) → (𝑇‘(𝐹‘(𝑖 − 1))) = (𝑇‘(𝐹‘(((#‘𝐹) − 1) − 1)))) |
31 | 30 | rneqd 5353 | . . . . 5 ⊢ (𝑖 = ((#‘𝐹) − 1) → ran (𝑇‘(𝐹‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(((#‘𝐹) − 1) − 1)))) |
32 | 27, 31 | eleq12d 2695 | . . . 4 ⊢ (𝑖 = ((#‘𝐹) − 1) → ((𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) ↔ (𝐹‘((#‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((#‘𝐹) − 1) − 1))))) |
33 | 32 | rspcv 3305 | . . 3 ⊢ (((#‘𝐹) − 1) ∈ (1..^(#‘𝐹)) → (∀𝑖 ∈ (1..^(#‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) → (𝐹‘((#‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((#‘𝐹) − 1) − 1))))) |
34 | 24, 26, 33 | sylc 65 | . 2 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → (𝐹‘((#‘𝐹) − 1)) ∈ ran (𝑇‘(𝐹‘(((#‘𝐹) − 1) − 1)))) |
35 | 8, 34 | eqeltrd 2701 | 1 ⊢ ((𝐹 ∈ dom 𝑆 ∧ ((#‘𝐹) − 1) ∈ ℕ) → (𝑆‘𝐹) ∈ ran (𝑇‘(𝐹‘(((#‘𝐹) − 1) − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ∖ cdif 3571 ∅c0 3915 {csn 4177 〈cop 4183 〈cotp 4185 ∪ ciun 4520 ↦ cmpt 4729 I cid 5023 × cxp 5112 dom cdm 5114 ran crn 5115 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 1𝑜c1o 7553 2𝑜c2o 7554 0cc0 9936 1c1 9937 − cmin 10266 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ℤ≥cuz 11687 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 splice csplice 13296 〈“cs2 13586 ~FG cefg 18119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 |
This theorem is referenced by: efgs1b 18149 efgredlemg 18155 efgredlemd 18157 efgredlem 18160 |
Copyright terms: Public domain | W3C validator |