Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr Structured version   Visualization version   Unicode version

Theorem eqlkr 34386
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
eqlkr.d  |-  D  =  (Scalar `  W )
eqlkr.k  |-  K  =  ( Base `  D
)
eqlkr.t  |-  .x.  =  ( .r `  D )
eqlkr.v  |-  V  =  ( Base `  W
)
eqlkr.f  |-  F  =  (LFnl `  W )
eqlkr.l  |-  L  =  (LKer `  W )
Assertion
Ref Expression
eqlkr  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( L `  G
)  =  ( L `
 H ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
Distinct variable groups:    x, r, D    x, F    G, r, x    H, r, x    V, r, x    K, r    x, L    .x. , r    x, W
Allowed substitution hints:    .x. ( x)    F( r)    K( x)    L( r)    W( r)

Proof of Theorem eqlkr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  W  e.  LVec )
2 lveclmod 19106 . . . . . 6  |-  ( W  e.  LVec  ->  W  e. 
LMod )
3 eqlkr.d . . . . . . 7  |-  D  =  (Scalar `  W )
43lmodring 18871 . . . . . 6  |-  ( W  e.  LMod  ->  D  e. 
Ring )
52, 4syl 17 . . . . 5  |-  ( W  e.  LVec  ->  D  e. 
Ring )
61, 5syl 17 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  D  e.  Ring )
7 eqlkr.k . . . . 5  |-  K  =  ( Base `  D
)
8 eqid 2622 . . . . 5  |-  ( 1r
`  D )  =  ( 1r `  D
)
97, 8ringidcl 18568 . . . 4  |-  ( D  e.  Ring  ->  ( 1r
`  D )  e.  K )
106, 9syl 17 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  ( 1r `  D )  e.  K
)
11 simp11 1091 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  W  e.  LVec )
1211, 5syl 17 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  D  e.  Ring )
13 simp12l 1174 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  G  e.  F )
14 simp3 1063 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  x  e.  V )
15 eqlkr.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
16 eqlkr.f . . . . . . . . 9  |-  F  =  (LFnl `  W )
173, 7, 15, 16lflcl 34351 . . . . . . . 8  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  K )
1811, 13, 14, 17syl3anc 1326 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( G `  x
)  e.  K )
19 eqlkr.t . . . . . . . 8  |-  .x.  =  ( .r `  D )
207, 19, 8ringridm 18572 . . . . . . 7  |-  ( ( D  e.  Ring  /\  ( G `  x )  e.  K )  ->  (
( G `  x
)  .x.  ( 1r `  D ) )  =  ( G `  x
) )
2112, 18, 20syl2anc 693 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( ( G `  x )  .x.  ( 1r `  D ) )  =  ( G `  x ) )
22 simp2 1062 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  G  =  ( V  X.  { ( 0g
`  D ) } ) )
23 simp13 1093 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( L `  G
)  =  ( L `
 H ) )
2411, 2syl 17 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  W  e.  LMod )
25 eqid 2622 . . . . . . . . . . . . 13  |-  ( 0g
`  D )  =  ( 0g `  D
)
26 eqlkr.l . . . . . . . . . . . . 13  |-  L  =  (LKer `  W )
273, 25, 15, 16, 26lkr0f 34381 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
2824, 13, 27syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( ( L `  G )  =  V  <-> 
G  =  ( V  X.  { ( 0g
`  D ) } ) ) )
2922, 28mpbird 247 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( L `  G
)  =  V )
3023, 29eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( L `  H
)  =  V )
31 simp12r 1175 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  H  e.  F )
323, 25, 15, 16, 26lkr0f 34381 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  H  e.  F )  ->  (
( L `  H
)  =  V  <->  H  =  ( V  X.  { ( 0g `  D ) } ) ) )
3324, 31, 32syl2anc 693 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( ( L `  H )  =  V  <-> 
H  =  ( V  X.  { ( 0g
`  D ) } ) ) )
3430, 33mpbid 222 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  H  =  ( V  X.  { ( 0g
`  D ) } ) )
3522, 34eqtr4d 2659 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  G  =  H )
3635fveq1d 6193 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( G `  x
)  =  ( H `
 x ) )
3721, 36eqtr2d 2657 . . . . 5  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } )  /\  x  e.  V )  ->  ( H `  x
)  =  ( ( G `  x ) 
.x.  ( 1r `  D ) ) )
38373expia 1267 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  ( x  e.  V  ->  ( H `  x )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) ) )
3938ralrimiv 2965 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  ( 1r `  D ) ) )
40 oveq2 6658 . . . . . 6  |-  ( r  =  ( 1r `  D )  ->  (
( G `  x
)  .x.  r )  =  ( ( G `
 x )  .x.  ( 1r `  D ) ) )
4140eqeq2d 2632 . . . . 5  |-  ( r  =  ( 1r `  D )  ->  (
( H `  x
)  =  ( ( G `  x ) 
.x.  r )  <->  ( H `  x )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) ) )
4241ralbidv 2986 . . . 4  |-  ( r  =  ( 1r `  D )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r )  <->  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) ) )
4342rspcev 3309 . . 3  |-  ( ( ( 1r `  D
)  e.  K  /\  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  ( 1r `  D ) ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
)
4410, 39, 43syl2anc 693 . 2  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =  ( V  X.  {
( 0g `  D
) } ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
45 simpl1 1064 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  W  e.  LVec )
46 simpl2l 1114 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  G  e.  F
)
47 simpr 477 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  G  =/=  ( V  X.  { ( 0g
`  D ) } ) )
483, 25, 8, 15, 16lfl1 34357 . . . 4  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  E. z  e.  V  ( G `  z )  =  ( 1r `  D ) )
4945, 46, 47, 48syl3anc 1326 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  E. z  e.  V  ( G `  z )  =  ( 1r `  D ) )
50 simpl1 1064 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  W  e.  LVec )
51 simpl2r 1115 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  H  e.  F )
52 simpr2 1068 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  z  e.  V )
533, 7, 15, 16lflcl 34351 . . . . . . . 8  |-  ( ( W  e.  LVec  /\  H  e.  F  /\  z  e.  V )  ->  ( H `  z )  e.  K )
5450, 51, 52, 53syl3anc 1326 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  ( H `  z )  e.  K
)
55 simp11 1091 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  W  e.  LVec )
5655, 2syl 17 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  W  e.  LMod )
57 simp12r 1175 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  H  e.  F )
58 simp12l 1174 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  G  e.  F )
59 simp3 1063 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  x  e.  V )
603, 7, 15, 16lflcl 34351 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  K )
6156, 58, 59, 60syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  x )  e.  K
)
62 simp22 1095 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  z  e.  V )
63 eqid 2622 . . . . . . . . . . . . . 14  |-  ( .s
`  W )  =  ( .s `  W
)
643, 7, 19, 15, 63, 16lflmul 34355 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  (
( G `  x
)  e.  K  /\  z  e.  V )
)  ->  ( H `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
6556, 57, 61, 62, 64syl112anc 1330 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
6665oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( H `  x )
( -g `  D ) ( H `  (
( G `  x
) ( .s `  W ) z ) ) )  =  ( ( H `  x
) ( -g `  D
) ( ( G `
 x )  .x.  ( H `  z ) ) ) )
6715, 3, 63, 7lmodvscl 18880 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  ( G `  x )  e.  K  /\  z  e.  V )  ->  (
( G `  x
) ( .s `  W ) z )  e.  V )
6856, 61, 62, 67syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )
( .s `  W
) z )  e.  V )
69 eqid 2622 . . . . . . . . . . . . . 14  |-  ( -g `  D )  =  (
-g `  D )
70 eqid 2622 . . . . . . . . . . . . . 14  |-  ( -g `  W )  =  (
-g `  W )
713, 69, 15, 70, 16lflsub 34354 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  (
x  e.  V  /\  ( ( G `  x ) ( .s
`  W ) z )  e.  V ) )  ->  ( H `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( H `  x ) ( -g `  D
) ( H `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7256, 57, 59, 68, 71syl112anc 1330 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( H `  x ) ( -g `  D
) ( H `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7315, 70lmodvsubcl 18908 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LMod  /\  x  e.  V  /\  (
( G `  x
) ( .s `  W ) z )  e.  V )  -> 
( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) )  e.  V )
7456, 59, 68, 73syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( x
( -g `  W ) ( ( G `  x ) ( .s
`  W ) z ) )  e.  V
)
753, 69, 15, 70, 16lflsub 34354 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
x  e.  V  /\  ( ( G `  x ) ( .s
`  W ) z )  e.  V ) )  ->  ( G `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( G `  x ) ( -g `  D
) ( G `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7656, 58, 59, 68, 75syl112anc 1330 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( ( G `  x ) ( -g `  D
) ( G `  ( ( G `  x ) ( .s
`  W ) z ) ) ) )
7755, 58, 59, 17syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  x )  e.  K
)
783, 7, 19, 15, 63, 16lflmul 34355 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
( G `  x
)  e.  K  /\  z  e.  V )
)  ->  ( G `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( G `  z ) ) )
7956, 58, 77, 62, 78syl112anc 1330 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( ( G `  x
)  .x.  ( G `  z ) ) )
80 simp23 1096 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  z )  =  ( 1r `  D ) )
8180oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )  .x.  ( G `  z
) )  =  ( ( G `  x
)  .x.  ( 1r `  D ) ) )
8255, 5syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  D  e.  Ring )
8382, 77, 20syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )  .x.  ( 1r `  D
) )  =  ( G `  x ) )
8479, 81, 833eqtrd 2660 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( ( G `  x ) ( .s
`  W ) z ) )  =  ( G `  x ) )
8584oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )
( -g `  D ) ( G `  (
( G `  x
) ( .s `  W ) z ) ) )  =  ( ( G `  x
) ( -g `  D
) ( G `  x ) ) )
863lmodfgrp 18872 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  e.  LMod  ->  D  e. 
Grp )
872, 86syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  LVec  ->  D  e. 
Grp )
8855, 87syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  D  e.  Grp )
897, 25, 69grpsubid 17499 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  Grp  /\  ( G `  x )  e.  K )  -> 
( ( G `  x ) ( -g `  D ) ( G `
 x ) )  =  ( 0g `  D ) )
9088, 77, 89syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )
( -g `  D ) ( G `  x
) )  =  ( 0g `  D ) )
9176, 85, 903eqtrd 2660 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( G `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( 0g
`  D ) )
9215, 3, 25, 16, 26ellkr 34376 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LVec  /\  G  e.  F )  ->  (
( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) )  e.  ( L `  G )  <->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( G `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9355, 58, 92syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  ( L `  G
)  <->  ( ( x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( G `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9474, 91, 93mpbir2and 957 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( x
( -g `  W ) ( ( G `  x ) ( .s
`  W ) z ) )  e.  ( L `  G ) )
95 simp13 1093 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( L `  G )  =  ( L `  H ) )
9694, 95eleqtrd 2703 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( x
( -g `  W ) ( ( G `  x ) ( .s
`  W ) z ) )  e.  ( L `  H ) )
9715, 3, 25, 16, 26ellkr 34376 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LVec  /\  H  e.  F )  ->  (
( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) )  e.  ( L `  H )  <->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( H `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9855, 57, 97syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  ( L `  H
)  <->  ( ( x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( H `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) ) )
9996, 98mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
x ( -g `  W
) ( ( G `
 x ) ( .s `  W ) z ) )  e.  V  /\  ( H `
 ( x (
-g `  W )
( ( G `  x ) ( .s
`  W ) z ) ) )  =  ( 0g `  D
) ) )
10099simprd 479 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  ( x ( -g `  W ) ( ( G `  x ) ( .s `  W
) z ) ) )  =  ( 0g
`  D ) )
10172, 100eqtr3d 2658 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( H `  x )
( -g `  D ) ( H `  (
( G `  x
) ( .s `  W ) z ) ) )  =  ( 0g `  D ) )
10266, 101eqtr3d 2658 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( H `  x )
( -g `  D ) ( ( G `  x )  .x.  ( H `  z )
) )  =  ( 0g `  D ) )
1033, 7, 15, 16lflcl 34351 . . . . . . . . . . . 12  |-  ( ( W  e.  LVec  /\  H  e.  F  /\  x  e.  V )  ->  ( H `  x )  e.  K )
10455, 57, 59, 103syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  x )  e.  K
)
105543adant3 1081 . . . . . . . . . . . 12  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  z )  e.  K
)
1063, 7, 19lmodmcl 18875 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  ( G `  x )  e.  K  /\  ( H `  z )  e.  K )  ->  (
( G `  x
)  .x.  ( H `  z ) )  e.  K )
10756, 77, 105, 106syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( ( G `  x )  .x.  ( H `  z
) )  e.  K
)
1087, 25, 69grpsubeq0 17501 . . . . . . . . . . 11  |-  ( ( D  e.  Grp  /\  ( H `  x )  e.  K  /\  (
( G `  x
)  .x.  ( H `  z ) )  e.  K )  ->  (
( ( H `  x ) ( -g `  D ) ( ( G `  x ) 
.x.  ( H `  z ) ) )  =  ( 0g `  D )  <->  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) ) )
10988, 104, 107, 108syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( (
( H `  x
) ( -g `  D
) ( ( G `
 x )  .x.  ( H `  z ) ) )  =  ( 0g `  D )  <-> 
( H `  x
)  =  ( ( G `  x ) 
.x.  ( H `  z ) ) ) )
110102, 109mpbid 222 . . . . . . . . 9  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) )  /\  x  e.  V
)  ->  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
1111103expia 1267 . . . . . . . 8  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  ( x  e.  V  ->  ( H `
 x )  =  ( ( G `  x )  .x.  ( H `  z )
) ) )
112111ralrimiv 2965 . . . . . . 7  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) )
113 oveq2 6658 . . . . . . . . . 10  |-  ( r  =  ( H `  z )  ->  (
( G `  x
)  .x.  r )  =  ( ( G `
 x )  .x.  ( H `  z ) ) )
114113eqeq2d 2632 . . . . . . . . 9  |-  ( r  =  ( H `  z )  ->  (
( H `  x
)  =  ( ( G `  x ) 
.x.  r )  <->  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) ) )
115114ralbidv 2986 . . . . . . . 8  |-  ( r  =  ( H `  z )  ->  ( A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r )  <->  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  ( H `  z ) ) ) )
116115rspcev 3309 . . . . . . 7  |-  ( ( ( H `  z
)  e.  K  /\  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  ( H `  z ) ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
)
11754, 112, 116syl2anc 693 . . . . . 6  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  ( G  =/=  ( V  X.  { ( 0g `  D ) } )  /\  z  e.  V  /\  ( G `  z
)  =  ( 1r
`  D ) ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
)
1181173exp2 1285 . . . . 5  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( L `  G
)  =  ( L `
 H ) )  ->  ( G  =/=  ( V  X.  {
( 0g `  D
) } )  -> 
( z  e.  V  ->  ( ( G `  z )  =  ( 1r `  D )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) ) ) ) )
119118imp 445 . . . 4  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( z  e.  V  ->  ( ( G `  z )  =  ( 1r `  D )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `  x
)  .x.  r )
) ) )
120119rexlimdv 3030 . . 3  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( E. z  e.  V  ( G `  z )  =  ( 1r `  D )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) ) )
12149, 120mpd 15 . 2  |-  ( ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F
)  /\  ( L `  G )  =  ( L `  H ) )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
12244, 121pm2.61dane 2881 1  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  H  e.  F )  /\  ( L `  G
)  =  ( L `
 H ) )  ->  E. r  e.  K  A. x  e.  V  ( H `  x )  =  ( ( G `
 x )  .x.  r ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   Grpcgrp 17422   -gcsg 17424   1rcur 18501   Ringcrg 18547   LModclmod 18863   LVecclvec 19102  LFnlclfn 34344  LKerclk 34372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lvec 19103  df-lfl 34345  df-lkr 34373
This theorem is referenced by:  eqlkr2  34387  eqlkr3  34388
  Copyright terms: Public domain W3C validator