| Step | Hyp | Ref
| Expression |
| 1 | | eqlkr3.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 2 | | eqlkr3.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 3 | | eqlkr3.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑊) |
| 4 | | eqlkr3.r |
. . . . 5
⊢ 𝑅 = (Base‘𝑆) |
| 5 | | eqlkr3.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
| 6 | | eqlkr3.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑊) |
| 7 | 3, 4, 5, 6 | lflf 34350 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝑅) |
| 8 | 1, 2, 7 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝐺:𝑉⟶𝑅) |
| 9 | | ffn 6045 |
. . 3
⊢ (𝐺:𝑉⟶𝑅 → 𝐺 Fn 𝑉) |
| 10 | 8, 9 | syl 17 |
. 2
⊢ (𝜑 → 𝐺 Fn 𝑉) |
| 11 | | eqlkr3.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| 12 | 3, 4, 5, 6 | lflf 34350 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝑅) |
| 13 | 1, 11, 12 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝐻:𝑉⟶𝑅) |
| 14 | | ffn 6045 |
. . 3
⊢ (𝐻:𝑉⟶𝑅 → 𝐻 Fn 𝑉) |
| 15 | 13, 14 | syl 17 |
. 2
⊢ (𝜑 → 𝐻 Fn 𝑉) |
| 16 | | eqlkr3.e |
. . . . . . 7
⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) |
| 17 | | eqid 2622 |
. . . . . . . 8
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 18 | | eqlkr3.k |
. . . . . . . 8
⊢ 𝐾 = (LKer‘𝑊) |
| 19 | 3, 4, 17, 5, 6, 18 | eqlkr 34386 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) |
| 20 | 1, 2, 11, 16, 19 | syl121anc 1331 |
. . . . . 6
⊢ (𝜑 → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) |
| 21 | | eqlkr3.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 22 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑋 ∈ 𝑉) |
| 23 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) |
| 24 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) |
| 25 | 24 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝐺‘𝑥)(.r‘𝑆)𝑟) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) |
| 26 | 23, 25 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) ↔ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
| 27 | 26 | rspcv 3305 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
| 28 | 22, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
| 29 | | eqlkr3.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘𝑋) = (𝐻‘𝑋)) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐺‘𝑋) = (𝐻‘𝑋)) |
| 31 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (𝐺‘𝑋) = (𝐻‘𝑋)) |
| 32 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) |
| 33 | 31, 32 | eqtr2d 2657 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → ((𝐺‘𝑋)(.r‘𝑆)𝑟) = (𝐺‘𝑋)) |
| 34 | 33 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟)) = (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))) |
| 35 | 3 | lvecdrng 19105 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LVec → 𝑆 ∈
DivRing) |
| 36 | 1, 35 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑆 ∈ DivRing) |
| 38 | 3, 4, 5, 6 | lflcl 34351 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝑅) |
| 39 | 1, 2, 21, 38 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝑅) |
| 40 | 39 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐺‘𝑋) ∈ 𝑅) |
| 41 | | eqlkr3.n |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
| 42 | 41 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐺‘𝑋) ≠ 0 ) |
| 43 | | eqlkr3.o |
. . . . . . . . . . . . . . . 16
⊢ 0 =
(0g‘𝑆) |
| 44 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 45 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(invr‘𝑆) = (invr‘𝑆) |
| 46 | 4, 43, 17, 44, 45 | drnginvrl 18766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ 𝑅 ∧ (𝐺‘𝑋) ≠ 0 ) →
(((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋)) = (1r‘𝑆)) |
| 47 | 37, 40, 42, 46 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋)) = (1r‘𝑆)) |
| 48 | 47 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))(.r‘𝑆)𝑟) = ((1r‘𝑆)(.r‘𝑆)𝑟)) |
| 49 | | lveclmod 19106 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 50 | 1, 49 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 51 | 3 | lmodring 18871 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ LMod → 𝑆 ∈ Ring) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈ Ring) |
| 53 | 52 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑆 ∈ Ring) |
| 54 | 4, 43, 45 | drnginvrcl 18764 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ 𝑅 ∧ (𝐺‘𝑋) ≠ 0 ) →
((invr‘𝑆)‘(𝐺‘𝑋)) ∈ 𝑅) |
| 55 | 37, 40, 42, 54 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((invr‘𝑆)‘(𝐺‘𝑋)) ∈ 𝑅) |
| 56 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑟 ∈ 𝑅) |
| 57 | 4, 17 | ringass 18564 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Ring ∧
(((invr‘𝑆)‘(𝐺‘𝑋)) ∈ 𝑅 ∧ (𝐺‘𝑋) ∈ 𝑅 ∧ 𝑟 ∈ 𝑅)) → ((((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))(.r‘𝑆)𝑟) = (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
| 58 | 53, 55, 40, 56, 57 | syl13anc 1328 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))(.r‘𝑆)𝑟) = (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
| 59 | 4, 17, 44 | ringlidm 18571 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Ring ∧ 𝑟 ∈ 𝑅) → ((1r‘𝑆)(.r‘𝑆)𝑟) = 𝑟) |
| 60 | 53, 56, 59 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((1r‘𝑆)(.r‘𝑆)𝑟) = 𝑟) |
| 61 | 48, 58, 60 | 3eqtr3d 2664 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟)) = 𝑟) |
| 62 | 61 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟)) = 𝑟) |
| 63 | 47 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋)) = (1r‘𝑆)) |
| 64 | 34, 62, 63 | 3eqtr3d 2664 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → 𝑟 = (1r‘𝑆)) |
| 65 | 64 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟) → 𝑟 = (1r‘𝑆))) |
| 66 | 28, 65 | syld 47 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → 𝑟 = (1r‘𝑆))) |
| 67 | 66 | ancrd 577 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)))) |
| 68 | 67 | reximdva 3017 |
. . . . . 6
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → ∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)))) |
| 69 | 20, 68 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟))) |
| 70 | 4, 44 | ringidcl 18568 |
. . . . . . 7
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ 𝑅) |
| 71 | 52, 70 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑆) ∈ 𝑅) |
| 72 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑟 = (1r‘𝑆) → ((𝐺‘𝑥)(.r‘𝑆)𝑟) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆))) |
| 73 | 72 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑟 = (1r‘𝑆) → ((𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
| 74 | 73 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑟 = (1r‘𝑆) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
| 75 | 74 | ceqsrexv 3336 |
. . . . . 6
⊢
((1r‘𝑆) ∈ 𝑅 → (∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
| 76 | 71, 75 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
| 77 | 69, 76 | mpbid 222 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆))) |
| 78 | 77 | r19.21bi 2932 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆))) |
| 79 | 50 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 80 | 79, 51 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑆 ∈ Ring) |
| 81 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LVec) |
| 82 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
| 83 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
| 84 | 3, 4, 5, 6 | lflcl 34351 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝑅) |
| 85 | 81, 82, 83, 84 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝑅) |
| 86 | 4, 17, 44 | ringridm 18572 |
. . . 4
⊢ ((𝑆 ∈ Ring ∧ (𝐺‘𝑥) ∈ 𝑅) → ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)) = (𝐺‘𝑥)) |
| 87 | 80, 85, 86 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)) = (𝐺‘𝑥)) |
| 88 | 78, 87 | eqtr2d 2657 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
| 89 | 10, 15, 88 | eqfnfvd 6314 |
1
⊢ (𝜑 → 𝐺 = 𝐻) |