| Step | Hyp | Ref
| Expression |
| 1 | | eupth2.v |
. 2
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | eupth2.i |
. 2
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | | eupth2.f |
. 2
⊢ (𝜑 → Fun 𝐼) |
| 4 | | eupth2.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 5 | | eupth2.p |
. . . 4
⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| 6 | | eupthiswlk 27072 |
. . . 4
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 7 | | wlkcl 26511 |
. . . 4
⊢ (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈
ℕ0) |
| 8 | 5, 6, 7 | 3syl 18 |
. . 3
⊢ (𝜑 → (#‘𝐹) ∈
ℕ0) |
| 9 | | eupth2.l |
. . 3
⊢ (𝜑 → (𝑁 + 1) ≤ (#‘𝐹)) |
| 10 | | nn0p1elfzo 12510 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (#‘𝐹) ∈
ℕ0 ∧ (𝑁 + 1) ≤ (#‘𝐹)) → 𝑁 ∈ (0..^(#‘𝐹))) |
| 11 | 4, 8, 9, 10 | syl3anc 1326 |
. 2
⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) |
| 12 | | eupth2.u |
. 2
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 13 | | eupthistrl 27071 |
. . 3
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
| 14 | 5, 13 | syl 17 |
. 2
⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 15 | | eupth2.h |
. . . . 5
⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉 |
| 16 | 15 | fveq2i 6194 |
. . . 4
⊢
(Vtx‘𝐻) =
(Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
| 17 | | fvex 6201 |
. . . . . 6
⊢
(Vtx‘𝐺) ∈
V |
| 18 | 1, 17 | eqeltri 2697 |
. . . . 5
⊢ 𝑉 ∈ V |
| 19 | | fvex 6201 |
. . . . . . 7
⊢
(iEdg‘𝐺)
∈ V |
| 20 | 2, 19 | eqeltri 2697 |
. . . . . 6
⊢ 𝐼 ∈ V |
| 21 | 20 | resex 5443 |
. . . . 5
⊢ (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V |
| 22 | 18, 21 | opvtxfvi 25889 |
. . . 4
⊢
(Vtx‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = 𝑉 |
| 23 | 16, 22 | eqtri 2644 |
. . 3
⊢
(Vtx‘𝐻) =
𝑉 |
| 24 | 23 | a1i 11 |
. 2
⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| 25 | | snex 4908 |
. . . 4
⊢
{〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} ∈ V |
| 26 | 18, 25 | opvtxfvi 25889 |
. . 3
⊢
(Vtx‘〈𝑉,
{〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉 |
| 27 | 26 | a1i 11 |
. 2
⊢ (𝜑 → (Vtx‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = 𝑉) |
| 28 | | eupth2.x |
. . . . 5
⊢ 𝑋 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉 |
| 29 | 28 | fveq2i 6194 |
. . . 4
⊢
(Vtx‘𝑋) =
(Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
| 30 | 20 | resex 5443 |
. . . . 5
⊢ (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V |
| 31 | 18, 30 | opvtxfvi 25889 |
. . . 4
⊢
(Vtx‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = 𝑉 |
| 32 | 29, 31 | eqtri 2644 |
. . 3
⊢
(Vtx‘𝑋) =
𝑉 |
| 33 | 32 | a1i 11 |
. 2
⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| 34 | 15 | fveq2i 6194 |
. . . 4
⊢
(iEdg‘𝐻) =
(iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) |
| 35 | 18, 21 | opiedgfvi 25890 |
. . . 4
⊢
(iEdg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑁)))〉) = (𝐼 ↾ (𝐹 “ (0..^𝑁))) |
| 36 | 34, 35 | eqtri 2644 |
. . 3
⊢
(iEdg‘𝐻) =
(𝐼 ↾ (𝐹 “ (0..^𝑁))) |
| 37 | 36 | a1i 11 |
. 2
⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 38 | 18, 25 | opiedgfvi 25890 |
. . 3
⊢
(iEdg‘〈𝑉,
{〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉} |
| 39 | 38 | a1i 11 |
. 2
⊢ (𝜑 → (iEdg‘〈𝑉, {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}〉) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| 40 | 28 | fveq2i 6194 |
. . . 4
⊢
(iEdg‘𝑋) =
(iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) |
| 41 | 18, 30 | opiedgfvi 25890 |
. . . 4
⊢
(iEdg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))〉) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
| 42 | 40, 41 | eqtri 2644 |
. . 3
⊢
(iEdg‘𝑋) =
(𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) |
| 43 | 4 | nn0zd 11480 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 44 | | fzval3 12536 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(0...𝑁) = (0..^(𝑁 + 1))) |
| 45 | 44 | eqcomd 2628 |
. . . . . 6
⊢ (𝑁 ∈ ℤ →
(0..^(𝑁 + 1)) = (0...𝑁)) |
| 46 | 43, 45 | syl 17 |
. . . . 5
⊢ (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁)) |
| 47 | 46 | imaeq2d 5466 |
. . . 4
⊢ (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁))) |
| 48 | 47 | reseq2d 5396 |
. . 3
⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| 49 | 42, 48 | syl5eq 2668 |
. 2
⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| 50 | | eupth2.o |
. 2
⊢ (𝜑 → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑁), ∅, {(𝑃‘0), (𝑃‘𝑁)})) |
| 51 | | eupth2.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ UPGraph ) |
| 52 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 53 | 2 | upgrwlkedg 26538 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 54 | 51, 52, 53 | syl2anc 693 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 55 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) |
| 56 | 55 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = 𝑁 → (𝐼‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑁))) |
| 57 | | fveq2 6191 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) |
| 58 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (𝑘 + 1) = (𝑁 + 1)) |
| 59 | 58 | fveq2d 6195 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) |
| 60 | 57, 59 | preq12d 4276 |
. . . . 5
⊢ (𝑘 = 𝑁 → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
| 61 | 56, 60 | eqeq12d 2637 |
. . . 4
⊢ (𝑘 = 𝑁 → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
| 62 | 61 | rspcv 3305 |
. . 3
⊢ (𝑁 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
| 63 | 11, 54, 62 | sylc 65 |
. 2
⊢ (𝜑 → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
| 64 | 1, 2, 3, 11, 12, 14, 24, 27, 33, 37, 39, 49, 50, 63 | eupth2lem3lem7 27094 |
1
⊢ (𝜑 → (¬ 2 ∥
((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))) |