MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3 27096
Description: Lemma for eupth2 27099. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph )
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupth2.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
eupth2.x 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
eupth2.n (𝜑𝑁 ∈ ℕ0)
eupth2.l (𝜑 → (𝑁 + 1) ≤ (#‘𝐹))
eupth2.u (𝜑𝑈𝑉)
eupth2.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
Assertion
Ref Expression
eupth2lem3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑈   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem eupth2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupth2.v . 2 𝑉 = (Vtx‘𝐺)
2 eupth2.i . 2 𝐼 = (iEdg‘𝐺)
3 eupth2.f . 2 (𝜑 → Fun 𝐼)
4 eupth2.n . . 3 (𝜑𝑁 ∈ ℕ0)
5 eupth2.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
6 eupthiswlk 27072 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 26511 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0)
85, 6, 73syl 18 . . 3 (𝜑 → (#‘𝐹) ∈ ℕ0)
9 eupth2.l . . 3 (𝜑 → (𝑁 + 1) ≤ (#‘𝐹))
10 nn0p1elfzo 12510 . . 3 ((𝑁 ∈ ℕ0 ∧ (#‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (#‘𝐹)) → 𝑁 ∈ (0..^(#‘𝐹)))
114, 8, 9, 10syl3anc 1326 . 2 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
12 eupth2.u . 2 (𝜑𝑈𝑉)
13 eupthistrl 27071 . . 3 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
145, 13syl 17 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
15 eupth2.h . . . . 5 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
1615fveq2i 6194 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
17 fvex 6201 . . . . . 6 (Vtx‘𝐺) ∈ V
181, 17eqeltri 2697 . . . . 5 𝑉 ∈ V
19 fvex 6201 . . . . . . 7 (iEdg‘𝐺) ∈ V
202, 19eqeltri 2697 . . . . . 6 𝐼 ∈ V
2120resex 5443 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V
2218, 21opvtxfvi 25889 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = 𝑉
2316, 22eqtri 2644 . . 3 (Vtx‘𝐻) = 𝑉
2423a1i 11 . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
25 snex 4908 . . . 4 {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} ∈ V
2618, 25opvtxfvi 25889 . . 3 (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉
2726a1i 11 . 2 (𝜑 → (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉)
28 eupth2.x . . . . 5 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
2928fveq2i 6194 . . . 4 (Vtx‘𝑋) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
3020resex 5443 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V
3118, 30opvtxfvi 25889 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = 𝑉
3229, 31eqtri 2644 . . 3 (Vtx‘𝑋) = 𝑉
3332a1i 11 . 2 (𝜑 → (Vtx‘𝑋) = 𝑉)
3415fveq2i 6194 . . . 4 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
3518, 21opiedgfvi 25890 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3634, 35eqtri 2644 . . 3 (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3736a1i 11 . 2 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
3818, 25opiedgfvi 25890 . . 3 (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}
3938a1i 11 . 2 (𝜑 → (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
4028fveq2i 6194 . . . 4 (iEdg‘𝑋) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
4118, 30opiedgfvi 25890 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
4240, 41eqtri 2644 . . 3 (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
434nn0zd 11480 . . . . . 6 (𝜑𝑁 ∈ ℤ)
44 fzval3 12536 . . . . . . 7 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
4544eqcomd 2628 . . . . . 6 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
4643, 45syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁))
4746imaeq2d 5466 . . . 4 (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁)))
4847reseq2d 5396 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
4942, 48syl5eq 2668 . 2 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
50 eupth2.o . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
51 eupth2.g . . . 4 (𝜑𝐺 ∈ UPGraph )
525, 6syl 17 . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
532upgrwlkedg 26538 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5451, 52, 53syl2anc 693 . . 3 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
55 fveq2 6191 . . . . . 6 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
5655fveq2d 6195 . . . . 5 (𝑘 = 𝑁 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑁)))
57 fveq2 6191 . . . . . 6 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
58 oveq1 6657 . . . . . . 7 (𝑘 = 𝑁 → (𝑘 + 1) = (𝑁 + 1))
5958fveq2d 6195 . . . . . 6 (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1)))
6057, 59preq12d 4276 . . . . 5 (𝑘 = 𝑁 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
6156, 60eqeq12d 2637 . . . 4 (𝑘 = 𝑁 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
6261rspcv 3305 . . 3 (𝑁 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
6311, 54, 62sylc 65 . 2 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
641, 2, 3, 11, 12, 14, 24, 27, 33, 37, 39, 49, 50, 63eupth2lem3lem7 27094 1 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  c0 3915  ifcif 4086  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  cres 5116  cima 5117  Fun wfun 5882  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  2c2 11070  0cn0 11292  cz 11377  ...cfz 12326  ..^cfzo 12465  #chash 13117  cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975  VtxDegcvtxdg 26361  Walkscwlks 26492  Trailsctrls 26587  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-uspgr 26045  df-vtxdg 26362  df-wlks 26495  df-trls 26589  df-eupth 27058
This theorem is referenced by:  eupth2lems  27098
  Copyright terms: Public domain W3C validator