MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3 Structured version   Visualization version   Unicode version

Theorem eupth2lem3 27096
Description: Lemma for eupth2 27099. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v  |-  V  =  (Vtx `  G )
eupth2.i  |-  I  =  (iEdg `  G )
eupth2.g  |-  ( ph  ->  G  e. UPGraph  )
eupth2.f  |-  ( ph  ->  Fun  I )
eupth2.p  |-  ( ph  ->  F (EulerPaths `  G
) P )
eupth2.h  |-  H  = 
<. V ,  ( I  |`  ( F " (
0..^ N ) ) ) >.
eupth2.x  |-  X  = 
<. V ,  ( I  |`  ( F " (
0..^ ( N  + 
1 ) ) ) ) >.
eupth2.n  |-  ( ph  ->  N  e.  NN0 )
eupth2.l  |-  ( ph  ->  ( N  +  1 )  <_  ( # `  F
) )
eupth2.u  |-  ( ph  ->  U  e.  V )
eupth2.o  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  H ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) )
Assertion
Ref Expression
eupth2lem3  |-  ( ph  ->  ( -.  2  ||  ( (VtxDeg `  X ) `  U )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
Distinct variable groups:    x, H    x, U    x, V
Allowed substitution hints:    ph( x)    P( x)    F( x)    G( x)    I( x)    N( x)    X( x)

Proof of Theorem eupth2lem3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eupth2.v . 2  |-  V  =  (Vtx `  G )
2 eupth2.i . 2  |-  I  =  (iEdg `  G )
3 eupth2.f . 2  |-  ( ph  ->  Fun  I )
4 eupth2.n . . 3  |-  ( ph  ->  N  e.  NN0 )
5 eupth2.p . . . 4  |-  ( ph  ->  F (EulerPaths `  G
) P )
6 eupthiswlk 27072 . . . 4  |-  ( F (EulerPaths `  G ) P  ->  F (Walks `  G ) P )
7 wlkcl 26511 . . . 4  |-  ( F (Walks `  G ) P  ->  ( # `  F
)  e.  NN0 )
85, 6, 73syl 18 . . 3  |-  ( ph  ->  ( # `  F
)  e.  NN0 )
9 eupth2.l . . 3  |-  ( ph  ->  ( N  +  1 )  <_  ( # `  F
) )
10 nn0p1elfzo 12510 . . 3  |-  ( ( N  e.  NN0  /\  ( # `  F )  e.  NN0  /\  ( N  +  1 )  <_  ( # `  F
) )  ->  N  e.  ( 0..^ ( # `  F ) ) )
114, 8, 9, 10syl3anc 1326 . 2  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
12 eupth2.u . 2  |-  ( ph  ->  U  e.  V )
13 eupthistrl 27071 . . 3  |-  ( F (EulerPaths `  G ) P  ->  F (Trails `  G ) P )
145, 13syl 17 . 2  |-  ( ph  ->  F (Trails `  G
) P )
15 eupth2.h . . . . 5  |-  H  = 
<. V ,  ( I  |`  ( F " (
0..^ N ) ) ) >.
1615fveq2i 6194 . . . 4  |-  (Vtx `  H )  =  (Vtx
`  <. V ,  ( I  |`  ( F " ( 0..^ N ) ) ) >. )
17 fvex 6201 . . . . . 6  |-  (Vtx `  G )  e.  _V
181, 17eqeltri 2697 . . . . 5  |-  V  e. 
_V
19 fvex 6201 . . . . . . 7  |-  (iEdg `  G )  e.  _V
202, 19eqeltri 2697 . . . . . 6  |-  I  e. 
_V
2120resex 5443 . . . . 5  |-  ( I  |`  ( F " (
0..^ N ) ) )  e.  _V
2218, 21opvtxfvi 25889 . . . 4  |-  (Vtx `  <. V ,  ( I  |`  ( F " (
0..^ N ) ) ) >. )  =  V
2316, 22eqtri 2644 . . 3  |-  (Vtx `  H )  =  V
2423a1i 11 . 2  |-  ( ph  ->  (Vtx `  H )  =  V )
25 snex 4908 . . . 4  |-  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. }  e.  _V
2618, 25opvtxfvi 25889 . . 3  |-  (Vtx `  <. V ,  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } >. )  =  V
2726a1i 11 . 2  |-  ( ph  ->  (Vtx `  <. V ,  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } >. )  =  V )
28 eupth2.x . . . . 5  |-  X  = 
<. V ,  ( I  |`  ( F " (
0..^ ( N  + 
1 ) ) ) ) >.
2928fveq2i 6194 . . . 4  |-  (Vtx `  X )  =  (Vtx
`  <. V ,  ( I  |`  ( F " ( 0..^ ( N  +  1 ) ) ) ) >. )
3020resex 5443 . . . . 5  |-  ( I  |`  ( F " (
0..^ ( N  + 
1 ) ) ) )  e.  _V
3118, 30opvtxfvi 25889 . . . 4  |-  (Vtx `  <. V ,  ( I  |`  ( F " (
0..^ ( N  + 
1 ) ) ) ) >. )  =  V
3229, 31eqtri 2644 . . 3  |-  (Vtx `  X )  =  V
3332a1i 11 . 2  |-  ( ph  ->  (Vtx `  X )  =  V )
3415fveq2i 6194 . . . 4  |-  (iEdg `  H )  =  (iEdg `  <. V ,  ( I  |`  ( F " ( 0..^ N ) ) ) >. )
3518, 21opiedgfvi 25890 . . . 4  |-  (iEdg `  <. V ,  ( I  |`  ( F " (
0..^ N ) ) ) >. )  =  ( I  |`  ( F " ( 0..^ N ) ) )
3634, 35eqtri 2644 . . 3  |-  (iEdg `  H )  =  ( I  |`  ( F " ( 0..^ N ) ) )
3736a1i 11 . 2  |-  ( ph  ->  (iEdg `  H )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
3818, 25opiedgfvi 25890 . . 3  |-  (iEdg `  <. V ,  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } >. )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. }
3938a1i 11 . 2  |-  ( ph  ->  (iEdg `  <. V ,  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } >. )  =  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } )
4028fveq2i 6194 . . . 4  |-  (iEdg `  X )  =  (iEdg `  <. V ,  ( I  |`  ( F " ( 0..^ ( N  +  1 ) ) ) ) >. )
4118, 30opiedgfvi 25890 . . . 4  |-  (iEdg `  <. V ,  ( I  |`  ( F " (
0..^ ( N  + 
1 ) ) ) ) >. )  =  ( I  |`  ( F " ( 0..^ ( N  +  1 ) ) ) )
4240, 41eqtri 2644 . . 3  |-  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ ( N  +  1 ) ) ) )
434nn0zd 11480 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
44 fzval3 12536 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0 ... N )  =  ( 0..^ ( N  +  1 ) ) )
4544eqcomd 2628 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0..^ ( N  + 
1 ) )  =  ( 0 ... N
) )
4643, 45syl 17 . . . . 5  |-  ( ph  ->  ( 0..^ ( N  +  1 ) )  =  ( 0 ... N ) )
4746imaeq2d 5466 . . . 4  |-  ( ph  ->  ( F " (
0..^ ( N  + 
1 ) ) )  =  ( F "
( 0 ... N
) ) )
4847reseq2d 5396 . . 3  |-  ( ph  ->  ( I  |`  ( F " ( 0..^ ( N  +  1 ) ) ) )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
4942, 48syl5eq 2668 . 2  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
50 eupth2.o . 2  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  H ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) )
51 eupth2.g . . . 4  |-  ( ph  ->  G  e. UPGraph  )
525, 6syl 17 . . . 4  |-  ( ph  ->  F (Walks `  G
) P )
532upgrwlkedg 26538 . . . 4  |-  ( ( G  e. UPGraph  /\  F (Walks `  G ) P )  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
5451, 52, 53syl2anc 693 . . 3  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
55 fveq2 6191 . . . . . 6  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
5655fveq2d 6195 . . . . 5  |-  ( k  =  N  ->  (
I `  ( F `  k ) )  =  ( I `  ( F `  N )
) )
57 fveq2 6191 . . . . . 6  |-  ( k  =  N  ->  ( P `  k )  =  ( P `  N ) )
58 oveq1 6657 . . . . . . 7  |-  ( k  =  N  ->  (
k  +  1 )  =  ( N  + 
1 ) )
5958fveq2d 6195 . . . . . 6  |-  ( k  =  N  ->  ( P `  ( k  +  1 ) )  =  ( P `  ( N  +  1
) ) )
6057, 59preq12d 4276 . . . . 5  |-  ( k  =  N  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P `  N ) ,  ( P `  ( N  +  1 ) ) } )
6156, 60eqeq12d 2637 . . . 4  |-  ( k  =  N  ->  (
( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( I `  ( F `  N
) )  =  {
( P `  N
) ,  ( P `
 ( N  + 
1 ) ) } ) )
6261rspcv 3305 . . 3  |-  ( N  e.  ( 0..^ (
# `  F )
)  ->  ( A. k  e.  ( 0..^ ( # `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  ->  ( I `  ( F `  N
) )  =  {
( P `  N
) ,  ( P `
 ( N  + 
1 ) ) } ) )
6311, 54, 62sylc 65 . 2  |-  ( ph  ->  ( I `  ( F `  N )
)  =  { ( P `  N ) ,  ( P `  ( N  +  1
) ) } )
641, 2, 3, 11, 12, 14, 24, 27, 33, 37, 39, 49, 50, 63eupth2lem3lem7 27094 1  |-  ( ph  ->  ( -.  2  ||  ( (VtxDeg `  X ) `  U )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |` cres 5116   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075   2c2 11070   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117    || cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975  VtxDegcvtxdg 26361  Walkscwlks 26492  Trailsctrls 26587  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-uspgr 26045  df-vtxdg 26362  df-wlks 26495  df-trls 26589  df-eupth 27058
This theorem is referenced by:  eupth2lems  27098
  Copyright terms: Public domain W3C validator