![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-gcd | Structured version Visualization version GIF version |
Description: Example for df-gcd 15217. (Contributed by AV, 5-Sep-2021.) |
Ref | Expression |
---|---|
ex-gcd | ⊢ (-6 gcd 9) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 11189 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 11401 | . . 3 ⊢ 6 ∈ ℤ |
3 | 9nn 11192 | . . . 4 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 11401 | . . 3 ⊢ 9 ∈ ℤ |
5 | neggcd 15244 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
6 | 2, 4, 5 | mp2an 708 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
7 | 6cn 11102 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 3cn 11095 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 6p3e9 11170 | . . . . . 6 ⊢ (6 + 3) = 9 | |
10 | 7, 8, 9 | addcomli 10228 | . . . . 5 ⊢ (3 + 6) = 9 |
11 | 10 | eqcomi 2631 | . . . 4 ⊢ 9 = (3 + 6) |
12 | 11 | oveq2i 6661 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
13 | 3z 11410 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | gcdcom 15235 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
15 | 2, 13, 14 | mp2an 708 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
16 | 3p3e6 11161 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
17 | 16 | eqcomi 2631 | . . . . . 6 ⊢ 6 = (3 + 3) |
18 | 17 | oveq2i 6661 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
19 | 15, 18 | eqtri 2644 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
20 | gcdadd 15247 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
21 | 2, 13, 20 | mp2an 708 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
22 | gcdid 15248 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
24 | gcdadd 15247 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
25 | 13, 13, 24 | mp2an 708 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
26 | 3re 11094 | . . . . . 6 ⊢ 3 ∈ ℝ | |
27 | 0re 10040 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | 3pos 11114 | . . . . . . 7 ⊢ 0 < 3 | |
29 | 27, 26, 28 | ltleii 10160 | . . . . . 6 ⊢ 0 ≤ 3 |
30 | absid 14036 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
31 | 26, 29, 30 | mp2an 708 | . . . . 5 ⊢ (abs‘3) = 3 |
32 | 23, 25, 31 | 3eqtr3i 2652 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
33 | 19, 21, 32 | 3eqtr3i 2652 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
34 | 12, 33 | eqtri 2644 | . 2 ⊢ (6 gcd 9) = 3 |
35 | 6, 34 | eqtri 2644 | 1 ⊢ (-6 gcd 9) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 + caddc 9939 ≤ cle 10075 -cneg 10267 3c3 11071 6c6 11074 9c9 11077 ℤcz 11377 abscabs 13974 gcd cgcd 15216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 |
This theorem is referenced by: ex-lcm 27315 |
Copyright terms: Public domain | W3C validator |