MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem3 Structured version   Visualization version   GIF version

Theorem faclbnd4lem3 13082
Description: Lemma for faclbnd4 13084. The 𝑁 = 0 case. (Contributed by NM, 23-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem3 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem3
StepHypRef Expression
1 elnn0 11294 . . . . 5 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
2 0exp 12895 . . . . . . . 8 (𝐾 ∈ ℕ → (0↑𝐾) = 0)
32adantl 482 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) = 0)
4 nnnn0 11299 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
5 2nn0 11309 . . . . . . . . . . . 12 2 ∈ ℕ0
6 nn0sqcl 12887 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾↑2) ∈ ℕ0)
7 nn0expcl 12874 . . . . . . . . . . . 12 ((2 ∈ ℕ0 ∧ (𝐾↑2) ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
85, 6, 7sylancr 695 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (2↑(𝐾↑2)) ∈ ℕ0)
98adantl 482 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (2↑(𝐾↑2)) ∈ ℕ0)
10 nn0addcl 11328 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ0)
11 nn0expcl 12874 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ (𝑀 + 𝐾) ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
1210, 11syldan 487 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀↑(𝑀 + 𝐾)) ∈ ℕ0)
139, 12nn0mulcld 11356 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
144, 13sylan2 491 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℕ0)
1514nn0ge0d 11354 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → 0 ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
163, 15eqbrtrd 4675 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
17 1nn 11031 . . . . . . . . . 10 1 ∈ ℕ
18 elnn0 11294 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
19 nnnn0 11299 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
20 0nn0 11307 . . . . . . . . . . . . . 14 0 ∈ ℕ0
21 nn0addcl 11328 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (𝑀 + 0) ∈ ℕ0)
2219, 20, 21sylancl 694 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑀 + 0) ∈ ℕ0)
23 nnexpcl 12873 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ (𝑀 + 0) ∈ ℕ0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
2422, 23mpdan 702 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀↑(𝑀 + 0)) ∈ ℕ)
25 id 22 . . . . . . . . . . . . . . 15 (𝑀 = 0 → 𝑀 = 0)
26 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 0) = (0 + 0))
27 00id 10211 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
2826, 27syl6eq 2672 . . . . . . . . . . . . . . 15 (𝑀 = 0 → (𝑀 + 0) = 0)
2925, 28oveq12d 6668 . . . . . . . . . . . . . 14 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = (0↑0))
30 0exp0e1 12865 . . . . . . . . . . . . . 14 (0↑0) = 1
3129, 30syl6eq 2672 . . . . . . . . . . . . 13 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) = 1)
3231, 17syl6eqel 2709 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3324, 32jaoi 394 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑀↑(𝑀 + 0)) ∈ ℕ)
3418, 33sylbi 207 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) ∈ ℕ)
35 nnmulcl 11043 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝑀↑(𝑀 + 0)) ∈ ℕ) → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3617, 34, 35sylancr 695 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 · (𝑀↑(𝑀 + 0))) ∈ ℕ)
3736nnge1d 11063 . . . . . . . 8 (𝑀 ∈ ℕ0 → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
3837adantr 481 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → 1 ≤ (1 · (𝑀↑(𝑀 + 0))))
39 oveq2 6658 . . . . . . . . . 10 (𝐾 = 0 → (0↑𝐾) = (0↑0))
4039, 30syl6eq 2672 . . . . . . . . 9 (𝐾 = 0 → (0↑𝐾) = 1)
41 sq0i 12956 . . . . . . . . . . . 12 (𝐾 = 0 → (𝐾↑2) = 0)
4241oveq2d 6666 . . . . . . . . . . 11 (𝐾 = 0 → (2↑(𝐾↑2)) = (2↑0))
43 2cn 11091 . . . . . . . . . . . 12 2 ∈ ℂ
44 exp0 12864 . . . . . . . . . . . 12 (2 ∈ ℂ → (2↑0) = 1)
4543, 44ax-mp 5 . . . . . . . . . . 11 (2↑0) = 1
4642, 45syl6eq 2672 . . . . . . . . . 10 (𝐾 = 0 → (2↑(𝐾↑2)) = 1)
47 oveq2 6658 . . . . . . . . . . 11 (𝐾 = 0 → (𝑀 + 𝐾) = (𝑀 + 0))
4847oveq2d 6666 . . . . . . . . . 10 (𝐾 = 0 → (𝑀↑(𝑀 + 𝐾)) = (𝑀↑(𝑀 + 0)))
4946, 48oveq12d 6668 . . . . . . . . 9 (𝐾 = 0 → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) = (1 · (𝑀↑(𝑀 + 0))))
5040, 49breq12d 4666 . . . . . . . 8 (𝐾 = 0 → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5150adantl 482 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 = 0) → ((0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ↔ 1 ≤ (1 · (𝑀↑(𝑀 + 0)))))
5238, 51mpbird 247 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 = 0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
5316, 52jaodan 826 . . . . 5 ((𝑀 ∈ ℕ0 ∧ (𝐾 ∈ ℕ ∨ 𝐾 = 0)) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
541, 53sylan2b 492 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ≤ ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
55 nn0cn 11302 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
5655exp0d 13002 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀↑0) = 1)
5756oveq2d 6666 . . . . 5 (𝑀 ∈ ℕ0 → ((0↑𝐾) · (𝑀↑0)) = ((0↑𝐾) · 1))
58 nn0expcl 12874 . . . . . . . 8 ((0 ∈ ℕ0𝐾 ∈ ℕ0) → (0↑𝐾) ∈ ℕ0)
5920, 58mpan 706 . . . . . . 7 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℕ0)
6059nn0cnd 11353 . . . . . 6 (𝐾 ∈ ℕ0 → (0↑𝐾) ∈ ℂ)
6160mulid1d 10057 . . . . 5 (𝐾 ∈ ℕ0 → ((0↑𝐾) · 1) = (0↑𝐾))
6257, 61sylan9eq 2676 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) = (0↑𝐾))
6313nn0cnd 11353 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) ∈ ℂ)
6463mulid1d 10057 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
6554, 62, 643brtr4d 4685 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
6665adantr 481 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
67 oveq1 6657 . . . . 5 (𝑁 = 0 → (𝑁𝐾) = (0↑𝐾))
68 oveq2 6658 . . . . 5 (𝑁 = 0 → (𝑀𝑁) = (𝑀↑0))
6967, 68oveq12d 6668 . . . 4 (𝑁 = 0 → ((𝑁𝐾) · (𝑀𝑁)) = ((0↑𝐾) · (𝑀↑0)))
70 fveq2 6191 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
71 fac0 13063 . . . . . 6 (!‘0) = 1
7270, 71syl6eq 2672 . . . . 5 (𝑁 = 0 → (!‘𝑁) = 1)
7372oveq2d 6666 . . . 4 (𝑁 = 0 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1))
7469, 73breq12d 4666 . . 3 (𝑁 = 0 → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7574adantl 482 . 2 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → (((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)) ↔ ((0↑𝐾) · (𝑀↑0)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · 1)))
7666, 75mpbird 247 1 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ 𝑁 = 0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cn 11020  2c2 11070  0cn0 11292  cexp 12860  !cfa 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861  df-fac 13061
This theorem is referenced by:  faclbnd4lem4  13083  faclbnd4  13084
  Copyright terms: Public domain W3C validator