Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfo Structured version   Visualization version   Unicode version

Theorem fargshiftfo 41378
Description: If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g  |-  G  =  ( x  e.  ( 0..^ ( # `  F
) )  |->  ( F `
 ( x  + 
1 ) ) )
Assertion
Ref Expression
fargshiftfo  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  G :
( 0..^ ( # `  F ) ) -onto-> dom 
E )
Distinct variable groups:    x, F    x, E    x, N
Allowed substitution hint:    G( x)

Proof of Theorem fargshiftfo
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6115 . . 3  |-  ( F : ( 1 ... N ) -onto-> dom  E  ->  F : ( 1 ... N ) --> dom 
E )
2 fargshift.g . . . 4  |-  G  =  ( x  e.  ( 0..^ ( # `  F
) )  |->  ( F `
 ( x  + 
1 ) ) )
32fargshiftf 41376 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  G :
( 0..^ ( # `  F ) ) --> dom 
E )
41, 3sylan2 491 . 2  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  G :
( 0..^ ( # `  F ) ) --> dom 
E )
52rnmpt 5371 . . 3  |-  ran  G  =  { y  |  E. x  e.  ( 0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) }
6 fofn 6117 . . . . . 6  |-  ( F : ( 1 ... N ) -onto-> dom  E  ->  F  Fn  ( 1 ... N ) )
7 fnrnfv 6242 . . . . . 6  |-  ( F  Fn  ( 1 ... N )  ->  ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `
 z ) } )
86, 7syl 17 . . . . 5  |-  ( F : ( 1 ... N ) -onto-> dom  E  ->  ran  F  =  {
y  |  E. z  e.  ( 1 ... N
) y  =  ( F `  z ) } )
98adantl 482 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `  z ) } )
10 df-fo 5894 . . . . . . 7  |-  ( F : ( 1 ... N ) -onto-> dom  E  <->  ( F  Fn  ( 1 ... N )  /\  ran  F  =  dom  E
) )
1110biimpi 206 . . . . . 6  |-  ( F : ( 1 ... N ) -onto-> dom  E  ->  ( F  Fn  (
1 ... N )  /\  ran  F  =  dom  E
) )
1211adantl 482 . . . . 5  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ( F  Fn  ( 1 ... N
)  /\  ran  F  =  dom  E ) )
13 eqeq1 2626 . . . . . . . . 9  |-  ( ran 
F  =  dom  E  ->  ( ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `  z ) }  <->  dom  E  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `  z ) } ) )
14 eqcom 2629 . . . . . . . . 9  |-  ( dom 
E  =  { y  |  E. z  e.  ( 1 ... N
) y  =  ( F `  z ) }  <->  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `  z ) }  =  dom  E )
1513, 14syl6bb 276 . . . . . . . 8  |-  ( ran 
F  =  dom  E  ->  ( ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `  z ) }  <->  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `
 z ) }  =  dom  E ) )
16 ffn 6045 . . . . . . . . . . . . . 14  |-  ( F : ( 1 ... N ) --> dom  E  ->  F  Fn  ( 1 ... N ) )
17 fseq1hash 13165 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  F  Fn  ( 1 ... N ) )  ->  ( # `  F
)  =  N )
1816, 17sylan2 491 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  ( # `  F
)  =  N )
191, 18sylan2 491 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ( # `  F
)  =  N )
20 fz0add1fz1 12537 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  x  e.  ( 0..^ N ) )  -> 
( x  +  1 )  e.  ( 1 ... N ) )
21 nn0z 11400 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  N  e.  ZZ )
22 fzval3 12536 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ZZ  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( 1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
24 nn0cn 11302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  N  e.  CC )
25 1cnd 10056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  1  e.  CC )
2624, 25addcomd 10238 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N  +  1 )  =  ( 1  +  N
) )
2726oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( 1..^ ( N  +  1 ) )  =  ( 1..^ ( 1  +  N ) ) )
2823, 27eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( 1 ... N )  =  ( 1..^ ( 1  +  N ) ) )
2928eleq2d 2687 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( z  e.  ( 1 ... N )  <->  z  e.  ( 1..^ ( 1  +  N ) ) ) )
3029biimpa 501 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  z  e.  ( 1..^ ( 1  +  N ) ) )
3121adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  N  e.  ZZ )
32 fzosubel3 12528 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( 1..^ ( 1  +  N
) )  /\  N  e.  ZZ )  ->  (
z  -  1 )  e.  ( 0..^ N ) )
3330, 31, 32syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  ( z  - 
1 )  e.  ( 0..^ N ) )
34 oveq1 6657 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( z  - 
1 )  ->  (
x  +  1 )  =  ( ( z  -  1 )  +  1 ) )
3534eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( z  - 
1 )  ->  (
z  =  ( x  +  1 )  <->  z  =  ( ( z  - 
1 )  +  1 ) ) )
3635adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  /\  x  =  ( z  -  1 ) )  ->  ( z  =  ( x  + 
1 )  <->  z  =  ( ( z  - 
1 )  +  1 ) ) )
37 elfzelz 12342 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( 1 ... N )  ->  z  e.  ZZ )
3837zcnd 11483 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( 1 ... N )  ->  z  e.  CC )
3938adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  z  e.  CC )
40 1cnd 10056 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  1  e.  CC )
4139, 40npcand 10396 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  ( ( z  -  1 )  +  1 )  =  z )
4241eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  z  =  ( ( z  -  1 )  +  1 ) )
4333, 36, 42rspcedvd 3317 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  z  e.  ( 1 ... N ) )  ->  E. x  e.  ( 0..^ N ) z  =  ( x  + 
1 ) )
44 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( x  + 
1 )  ->  ( F `  z )  =  ( F `  ( x  +  1
) ) )
4544eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( x  + 
1 )  ->  (
y  =  ( F `
 z )  <->  y  =  ( F `  ( x  +  1 ) ) ) )
4645adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  z  =  ( x  +  1 ) )  ->  ( y  =  ( F `  z
)  <->  y  =  ( F `  ( x  +  1 ) ) ) )
4720, 43, 46rexxfrd 4881 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( E. z  e.  ( 1 ... N ) y  =  ( F `  z )  <->  E. x  e.  ( 0..^ N ) y  =  ( F `
 ( x  + 
1 ) ) ) )
4847adantr 481 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( # `  F )  =  N )  -> 
( E. z  e.  ( 1 ... N
) y  =  ( F `  z )  <->  E. x  e.  (
0..^ N ) y  =  ( F `  ( x  +  1
) ) ) )
49 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  =  N  ->  ( 0..^ ( # `  F
) )  =  ( 0..^ N ) )
5049rexeqdv 3145 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  =  N  ->  ( E. x  e.  ( 0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) )  <->  E. x  e.  ( 0..^ N ) y  =  ( F `  ( x  +  1
) ) ) )
5150bibi2d 332 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  =  N  ->  ( ( E. z  e.  ( 1 ... N ) y  =  ( F `
 z )  <->  E. x  e.  ( 0..^ ( # `  F ) ) y  =  ( F `  ( x  +  1
) ) )  <->  ( E. z  e.  ( 1 ... N ) y  =  ( F `  z )  <->  E. x  e.  ( 0..^ N ) y  =  ( F `
 ( x  + 
1 ) ) ) ) )
5251adantl 482 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( # `  F )  =  N )  -> 
( ( E. z  e.  ( 1 ... N
) y  =  ( F `  z )  <->  E. x  e.  (
0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) )  <->  ( E. z  e.  ( 1 ... N ) y  =  ( F `  z )  <->  E. x  e.  ( 0..^ N ) y  =  ( F `
 ( x  + 
1 ) ) ) ) )
5348, 52mpbird 247 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( # `  F )  =  N )  -> 
( E. z  e.  ( 1 ... N
) y  =  ( F `  z )  <->  E. x  e.  (
0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) ) )
5419, 53syldan 487 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ( E. z  e.  ( 1 ... N ) y  =  ( F `  z )  <->  E. x  e.  ( 0..^ ( # `  F ) ) y  =  ( F `  ( x  +  1
) ) ) )
5554abbidv 2741 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `
 z ) }  =  { y  |  E. x  e.  ( 0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) } )
5655eqeq1d 2624 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ( {
y  |  E. z  e.  ( 1 ... N
) y  =  ( F `  z ) }  =  dom  E  <->  { y  |  E. x  e.  ( 0..^ ( # `  F ) ) y  =  ( F `  ( x  +  1
) ) }  =  dom  E ) )
5756biimpcd 239 . . . . . . . 8  |-  ( { y  |  E. z  e.  ( 1 ... N
) y  =  ( F `  z ) }  =  dom  E  ->  ( ( N  e. 
NN0  /\  F :
( 1 ... N
) -onto-> dom  E )  ->  { y  |  E. x  e.  ( 0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) }  =  dom  E ) )
5815, 57syl6bi 243 . . . . . . 7  |-  ( ran 
F  =  dom  E  ->  ( ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `  z ) }  ->  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom 
E )  ->  { y  |  E. x  e.  ( 0..^ ( # `  F ) ) y  =  ( F `  ( x  +  1
) ) }  =  dom  E ) ) )
5958com23 86 . . . . . 6  |-  ( ran 
F  =  dom  E  ->  ( ( N  e. 
NN0  /\  F :
( 1 ... N
) -onto-> dom  E )  -> 
( ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `  z ) }  ->  { y  |  E. x  e.  ( 0..^ ( # `  F ) ) y  =  ( F `  ( x  +  1
) ) }  =  dom  E ) ) )
6059adantl 482 . . . . 5  |-  ( ( F  Fn  ( 1 ... N )  /\  ran  F  =  dom  E
)  ->  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ( ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `
 z ) }  ->  { y  |  E. x  e.  ( 0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) }  =  dom  E ) ) )
6112, 60mpcom 38 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ( ran  F  =  { y  |  E. z  e.  ( 1 ... N ) y  =  ( F `
 z ) }  ->  { y  |  E. x  e.  ( 0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) }  =  dom  E ) )
629, 61mpd 15 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  { y  |  E. x  e.  ( 0..^ ( # `  F
) ) y  =  ( F `  (
x  +  1 ) ) }  =  dom  E )
635, 62syl5eq 2668 . 2  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  ran  G  =  dom  E )
64 dffo2 6119 . 2  |-  ( G : ( 0..^ (
# `  F )
) -onto-> dom  E  <->  ( G : ( 0..^ (
# `  F )
) --> dom  E  /\  ran  G  =  dom  E
) )
654, 63, 64sylanbrc 698 1  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) -onto-> dom  E
)  ->  G :
( 0..^ ( # `  F ) ) -onto-> dom 
E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    |-> cmpt 4729   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator