MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodmodd Structured version   Visualization version   GIF version

Theorem fprodmodd 14728
Description: If all factors of two finite products are equal modulo 𝑀, the products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a (𝜑𝐴 ∈ Fin)
fprodmodd.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fprodmodd.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
fprodmodd.m (𝜑𝑀 ∈ ℕ)
fprodmodd.p ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
Assertion
Ref Expression
fprodmodd (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodmodd
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 14639 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21oveq1d 6665 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐵 mod 𝑀))
3 prodeq1 14639 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
43oveq1d 6665 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
52, 4eqeq12d 2637 . 2 (𝑥 = ∅ → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)))
6 prodeq1 14639 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 6665 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐵 mod 𝑀))
8 prodeq1 14639 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐶 = ∏𝑘𝑦 𝐶)
98oveq1d 6665 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
107, 9eqeq12d 2637 . 2 (𝑥 = 𝑦 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)))
11 prodeq1 14639 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵)
1211oveq1d 6665 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀))
13 prodeq1 14639 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶)
1413oveq1d 6665 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
1512, 14eqeq12d 2637 . 2 (𝑥 = (𝑦 ∪ {𝑖}) → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
16 prodeq1 14639 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1716oveq1d 6665 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐵 mod 𝑀))
18 prodeq1 14639 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐶 = ∏𝑘𝐴 𝐶)
1918oveq1d 6665 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
2017, 19eqeq12d 2637 . 2 (𝑥 = 𝐴 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀)))
21 prod0 14673 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2221a1i 11 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 = 1)
2322oveq1d 6665 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (1 mod 𝑀))
24 prod0 14673 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
2524eqcomi 2631 . . . 4 1 = ∏𝑘 ∈ ∅ 𝐶
2625oveq1i 6660 . . 3 (1 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)
2723, 26syl6eq 2672 . 2 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
28 nfv 1843 . . . . . . 7 𝑘(𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦)))
29 nfcsb1v 3549 . . . . . . 7 𝑘𝑖 / 𝑘𝐵
30 ssfi 8180 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3130ex 450 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝑦𝐴𝑦 ∈ Fin))
32 fprodmodd.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
3331, 32syl11 33 . . . . . . . . 9 (𝑦𝐴 → (𝜑𝑦 ∈ Fin))
3433adantr 481 . . . . . . . 8 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → (𝜑𝑦 ∈ Fin))
3534impcom 446 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
36 simpr 477 . . . . . . . 8 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → 𝑖 ∈ (𝐴𝑦))
3736adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 ∈ (𝐴𝑦))
38 eldifn 3733 . . . . . . . . 9 (𝑖 ∈ (𝐴𝑦) → ¬ 𝑖𝑦)
3938adantl 482 . . . . . . . 8 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → ¬ 𝑖𝑦)
4039adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ¬ 𝑖𝑦)
41 simpll 790 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
42 ssel 3597 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
4342adantr 481 . . . . . . . . . . 11 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
4443adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
4544imp 445 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
46 fprodmodd.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
4741, 45, 46syl2anc 693 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
4847zcnd 11483 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
49 csbeq1a 3542 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
50 eldifi 3732 . . . . . . . . . 10 (𝑖 ∈ (𝐴𝑦) → 𝑖𝐴)
5150adantl 482 . . . . . . . . 9 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → 𝑖𝐴)
5246ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
53 rspcsbela 4006 . . . . . . . . 9 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑖 / 𝑘𝐵 ∈ ℤ)
5451, 52, 53syl2anr 495 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℤ)
5554zcnd 11483 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℂ)
5628, 29, 35, 37, 40, 48, 49, 55fprodsplitsn 14720 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 = (∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵))
5756oveq1d 6665 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5857adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5935, 47fprodzcl 14684 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℤ)
6059adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐵 ∈ ℤ)
61 fprodmodd.c . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
6241, 45, 61syl2anc 693 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℤ)
6335, 62fprodzcl 14684 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6463adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6554adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐵 ∈ ℤ)
6661ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℤ)
67 rspcsbela 4006 . . . . . . 7 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐶 ∈ ℤ) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6851, 66, 67syl2anr 495 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6968adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐶 ∈ ℤ)
70 fprodmodd.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
7170nnrpd 11870 . . . . . . 7 (𝜑𝑀 ∈ ℝ+)
7271adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑀 ∈ ℝ+)
7372adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑀 ∈ ℝ+)
74 simpr 477 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
75 fprodmodd.p . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7675ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
77 rspsbca 3519 . . . . . . . . 9 ((𝑖𝐴 ∧ ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7851, 76, 77syl2anr 495 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
79 vex 3203 . . . . . . . . 9 𝑖 ∈ V
80 sbceqg 3984 . . . . . . . . 9 (𝑖 ∈ V → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8179, 80mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8278, 81mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀))
83 csbov1g 6690 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀))
8479, 83ax-mp 5 . . . . . . 7 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀)
85 csbov1g 6690 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8679, 85ax-mp 5 . . . . . . 7 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀)
8782, 84, 863eqtr3g 2679 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8887adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8960, 64, 65, 69, 73, 74, 88modmul12d 12724 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
90 nfcsb1v 3549 . . . . . . . 8 𝑘𝑖 / 𝑘𝐶
9162zcnd 11483 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
92 csbeq1a 3542 . . . . . . . 8 (𝑘 = 𝑖𝐶 = 𝑖 / 𝑘𝐶)
9368zcnd 11483 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℂ)
9428, 90, 35, 37, 40, 91, 92, 93fprodsplitsn 14720 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 = (∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶))
9594oveq1d 6665 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
9695eqcomd 2628 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9796adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9858, 89, 973eqtrd 2660 . . 3 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9998ex 450 . 2 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
1005, 10, 15, 20, 27, 99, 32findcard2d 8202 1 (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  [wsbc 3435  csb 3533  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177  (class class class)co 6650  Fincfn 7955  1c1 9937   · cmul 9941  cn 11020  cz 11377  +crp 11832   mod cmo 12668  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  gausslemma2dlem5a  25095
  Copyright terms: Public domain W3C validator