MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodle Structured version   Visualization version   GIF version

Theorem fprodle 14727
Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodle.kph 𝑘𝜑
fprodle.a (𝜑𝐴 ∈ Fin)
fprodle.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodle.0l3b ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fprodle.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
fprodle.blec ((𝜑𝑘𝐴) → 𝐵𝐶)
Assertion
Ref Expression
fprodle (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 1red 10055 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ∈ ℝ)
2 fprodle.kph . . . . . 6 𝑘𝜑
3 nfra1 2941 . . . . . 6 𝑘𝑘𝐴 𝐵 ≠ 0
42, 3nfan 1828 . . . . 5 𝑘(𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0)
5 fprodle.a . . . . . 6 (𝜑𝐴 ∈ Fin)
65adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 𝐴 ∈ Fin)
7 fprodle.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
87adantlr 751 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℝ)
9 fprodle.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
109adantlr 751 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
11 rspa 2930 . . . . . . 7 ((∀𝑘𝐴 𝐵 ≠ 0 ∧ 𝑘𝐴) → 𝐵 ≠ 0)
1211adantll 750 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ≠ 0)
138, 10, 12redivcld 10853 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → (𝐶 / 𝐵) ∈ ℝ)
144, 6, 13fprodreclf 14689 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) ∈ ℝ)
152, 5, 9fprodreclf 14689 . . . . 5 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
1615adantr 481 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℝ)
17 fprodle.0l3b . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
182, 5, 9, 17fprodge0 14724 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
1918adantr 481 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 0 ≤ ∏𝑘𝐴 𝐵)
20 0red 10041 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 ∈ ℝ)
2117adantlr 751 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 ≤ 𝐵)
2220, 10, 21, 12leneltd 10191 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 0 < 𝐵)
2310, 22elrpd 11869 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ+)
24 fprodle.blec . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝐶)
2524adantlr 751 . . . . . 6 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵𝐶)
26 divge1 11898 . . . . . 6 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ ∧ 𝐵𝐶) → 1 ≤ (𝐶 / 𝐵))
2723, 8, 25, 26syl3anc 1326 . . . . 5 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 1 ≤ (𝐶 / 𝐵))
284, 6, 13, 27fprodge1 14726 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → 1 ≤ ∏𝑘𝐴 (𝐶 / 𝐵))
291, 14, 16, 19, 28lemul2ad 10964 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) ≤ (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)))
309recnd 10068 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
312, 5, 30fprodclf 14723 . . . . . 6 (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
3231mulid1d 10057 . . . . 5 (𝜑 → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
3332adantr 481 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · 1) = ∏𝑘𝐴 𝐵)
347recnd 10068 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
3534adantlr 751 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
3630adantlr 751 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
374, 6, 35, 36, 12fproddivf 14718 . . . . . 6 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 (𝐶 / 𝐵) = (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵))
3837oveq2d 6666 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)))
392, 5, 34fprodclf 14723 . . . . . . 7 (𝜑 → ∏𝑘𝐴 𝐶 ∈ ℂ)
4039adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐶 ∈ ℂ)
4131adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ∈ ℂ)
424, 6, 36, 12fprodn0f 14722 . . . . . 6 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≠ 0)
4340, 41, 42divcan2d 10803 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · (∏𝑘𝐴 𝐶 / ∏𝑘𝐴 𝐵)) = ∏𝑘𝐴 𝐶)
44 eqidd 2623 . . . . 5 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐶 = ∏𝑘𝐴 𝐶)
4538, 43, 443eqtrd 2660 . . . 4 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) = ∏𝑘𝐴 𝐶)
4633, 45breq12d 4666 . . 3 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ((∏𝑘𝐴 𝐵 · 1) ≤ (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 (𝐶 / 𝐵)) ↔ ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶))
4729, 46mpbid 222 . 2 ((𝜑 ∧ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
48 simpl 473 . . 3 ((𝜑 ∧ ¬ ∀𝑘𝐴 𝐵 ≠ 0) → 𝜑)
49 nne 2798 . . . . . . 7 𝐵 ≠ 0 ↔ 𝐵 = 0)
5049rexbii 3041 . . . . . 6 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ∃𝑘𝐴 𝐵 = 0)
51 rexnal 2995 . . . . . 6 (∃𝑘𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀𝑘𝐴 𝐵 ≠ 0)
52 nfv 1843 . . . . . . 7 𝑗 𝐵 = 0
53 nfcsb1v 3549 . . . . . . . 8 𝑘𝑗 / 𝑘𝐵
54 nfcv 2764 . . . . . . . 8 𝑘0
5553, 54nfeq 2776 . . . . . . 7 𝑘𝑗 / 𝑘𝐵 = 0
56 csbeq1a 3542 . . . . . . . 8 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
5756eqeq1d 2624 . . . . . . 7 (𝑘 = 𝑗 → (𝐵 = 0 ↔ 𝑗 / 𝑘𝐵 = 0))
5852, 55, 57cbvrex 3168 . . . . . 6 (∃𝑘𝐴 𝐵 = 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
5950, 51, 583bitr3i 290 . . . . 5 (¬ ∀𝑘𝐴 𝐵 ≠ 0 ↔ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
6059biimpi 206 . . . 4 (¬ ∀𝑘𝐴 𝐵 ≠ 0 → ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
6160adantl 482 . . 3 ((𝜑 ∧ ¬ ∀𝑘𝐴 𝐵 ≠ 0) → ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0)
62 nfv 1843 . . . . . 6 𝑗𝜑
63 nfv 1843 . . . . . 6 𝑗𝑘𝐴 𝐵 = 0
64 nfv 1843 . . . . . . . . 9 𝑘 𝑗𝐴
652, 64, 55nf3an 1831 . . . . . . . 8 𝑘(𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0)
6653ad2ant1 1082 . . . . . . . 8 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝐴 ∈ Fin)
67303ad2antl1 1223 . . . . . . . 8 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
68 simp2 1062 . . . . . . . 8 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → 𝑗𝐴)
6957biimparc 504 . . . . . . . . 9 ((𝑗 / 𝑘𝐵 = 0 ∧ 𝑘 = 𝑗) → 𝐵 = 0)
70693ad2antl3 1225 . . . . . . . 8 (((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) ∧ 𝑘 = 𝑗) → 𝐵 = 0)
7165, 66, 67, 68, 70fprodeq0g 14725 . . . . . . 7 ((𝜑𝑗𝐴𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
72713exp 1264 . . . . . 6 (𝜑 → (𝑗𝐴 → (𝑗 / 𝑘𝐵 = 0 → ∏𝑘𝐴 𝐵 = 0)))
7362, 63, 72rexlimd 3026 . . . . 5 (𝜑 → (∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0 → ∏𝑘𝐴 𝐵 = 0))
7473imp 445 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 = 0)
75 0red 10041 . . . . . . 7 ((𝜑𝑘𝐴) → 0 ∈ ℝ)
7675, 9, 7, 17, 24letrd 10194 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ 𝐶)
772, 5, 7, 76fprodge0 14724 . . . . 5 (𝜑 → 0 ≤ ∏𝑘𝐴 𝐶)
7877adantr 481 . . . 4 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → 0 ≤ ∏𝑘𝐴 𝐶)
7974, 78eqbrtrd 4675 . . 3 ((𝜑 ∧ ∃𝑗𝐴 𝑗 / 𝑘𝐵 = 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
8048, 61, 79syl2anc 693 . 2 ((𝜑 ∧ ¬ ∀𝑘𝐴 𝐵 ≠ 0) → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
8147, 80pm2.61dan 832 1 (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wne 2794  wral 2912  wrex 2913  csb 3533   class class class wbr 4653  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cle 10075   / cdiv 10684  +crp 11832  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  prmolefac  15750  etransclem23  40474  hoidifhspdmvle  40834
  Copyright terms: Public domain W3C validator