| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodmodd | Structured version Visualization version Unicode version | ||
| Description: If all factors of two
finite products are equal modulo |
| Ref | Expression |
|---|---|
| fprodmodd.a |
|
| fprodmodd.b |
|
| fprodmodd.c |
|
| fprodmodd.m |
|
| fprodmodd.p |
|
| Ref | Expression |
|---|---|
| fprodmodd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1 14639 |
. . . 4
| |
| 2 | 1 | oveq1d 6665 |
. . 3
|
| 3 | prodeq1 14639 |
. . . 4
| |
| 4 | 3 | oveq1d 6665 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2637 |
. 2
|
| 6 | prodeq1 14639 |
. . . 4
| |
| 7 | 6 | oveq1d 6665 |
. . 3
|
| 8 | prodeq1 14639 |
. . . 4
| |
| 9 | 8 | oveq1d 6665 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2637 |
. 2
|
| 11 | prodeq1 14639 |
. . . 4
| |
| 12 | 11 | oveq1d 6665 |
. . 3
|
| 13 | prodeq1 14639 |
. . . 4
| |
| 14 | 13 | oveq1d 6665 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2637 |
. 2
|
| 16 | prodeq1 14639 |
. . . 4
| |
| 17 | 16 | oveq1d 6665 |
. . 3
|
| 18 | prodeq1 14639 |
. . . 4
| |
| 19 | 18 | oveq1d 6665 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2637 |
. 2
|
| 21 | prod0 14673 |
. . . . 5
| |
| 22 | 21 | a1i 11 |
. . . 4
|
| 23 | 22 | oveq1d 6665 |
. . 3
|
| 24 | prod0 14673 |
. . . . 5
| |
| 25 | 24 | eqcomi 2631 |
. . . 4
|
| 26 | 25 | oveq1i 6660 |
. . 3
|
| 27 | 23, 26 | syl6eq 2672 |
. 2
|
| 28 | nfv 1843 |
. . . . . . 7
| |
| 29 | nfcsb1v 3549 |
. . . . . . 7
| |
| 30 | ssfi 8180 |
. . . . . . . . . . 11
| |
| 31 | 30 | ex 450 |
. . . . . . . . . 10
|
| 32 | fprodmodd.a |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl11 33 |
. . . . . . . . 9
|
| 34 | 33 | adantr 481 |
. . . . . . . 8
|
| 35 | 34 | impcom 446 |
. . . . . . 7
|
| 36 | simpr 477 |
. . . . . . . 8
| |
| 37 | 36 | adantl 482 |
. . . . . . 7
|
| 38 | eldifn 3733 |
. . . . . . . . 9
| |
| 39 | 38 | adantl 482 |
. . . . . . . 8
|
| 40 | 39 | adantl 482 |
. . . . . . 7
|
| 41 | simpll 790 |
. . . . . . . . 9
| |
| 42 | ssel 3597 |
. . . . . . . . . . . 12
| |
| 43 | 42 | adantr 481 |
. . . . . . . . . . 11
|
| 44 | 43 | adantl 482 |
. . . . . . . . . 10
|
| 45 | 44 | imp 445 |
. . . . . . . . 9
|
| 46 | fprodmodd.b |
. . . . . . . . 9
| |
| 47 | 41, 45, 46 | syl2anc 693 |
. . . . . . . 8
|
| 48 | 47 | zcnd 11483 |
. . . . . . 7
|
| 49 | csbeq1a 3542 |
. . . . . . 7
| |
| 50 | eldifi 3732 |
. . . . . . . . . 10
| |
| 51 | 50 | adantl 482 |
. . . . . . . . 9
|
| 52 | 46 | ralrimiva 2966 |
. . . . . . . . 9
|
| 53 | rspcsbela 4006 |
. . . . . . . . 9
| |
| 54 | 51, 52, 53 | syl2anr 495 |
. . . . . . . 8
|
| 55 | 54 | zcnd 11483 |
. . . . . . 7
|
| 56 | 28, 29, 35, 37, 40, 48, 49, 55 | fprodsplitsn 14720 |
. . . . . 6
|
| 57 | 56 | oveq1d 6665 |
. . . . 5
|
| 58 | 57 | adantr 481 |
. . . 4
|
| 59 | 35, 47 | fprodzcl 14684 |
. . . . . 6
|
| 60 | 59 | adantr 481 |
. . . . 5
|
| 61 | fprodmodd.c |
. . . . . . . 8
| |
| 62 | 41, 45, 61 | syl2anc 693 |
. . . . . . 7
|
| 63 | 35, 62 | fprodzcl 14684 |
. . . . . 6
|
| 64 | 63 | adantr 481 |
. . . . 5
|
| 65 | 54 | adantr 481 |
. . . . 5
|
| 66 | 61 | ralrimiva 2966 |
. . . . . . 7
|
| 67 | rspcsbela 4006 |
. . . . . . 7
| |
| 68 | 51, 66, 67 | syl2anr 495 |
. . . . . 6
|
| 69 | 68 | adantr 481 |
. . . . 5
|
| 70 | fprodmodd.m |
. . . . . . . 8
| |
| 71 | 70 | nnrpd 11870 |
. . . . . . 7
|
| 72 | 71 | adantr 481 |
. . . . . 6
|
| 73 | 72 | adantr 481 |
. . . . 5
|
| 74 | simpr 477 |
. . . . 5
| |
| 75 | fprodmodd.p |
. . . . . . . . . 10
| |
| 76 | 75 | ralrimiva 2966 |
. . . . . . . . 9
|
| 77 | rspsbca 3519 |
. . . . . . . . 9
| |
| 78 | 51, 76, 77 | syl2anr 495 |
. . . . . . . 8
|
| 79 | vex 3203 |
. . . . . . . . 9
| |
| 80 | sbceqg 3984 |
. . . . . . . . 9
| |
| 81 | 79, 80 | mp1i 13 |
. . . . . . . 8
|
| 82 | 78, 81 | mpbid 222 |
. . . . . . 7
|
| 83 | csbov1g 6690 |
. . . . . . . 8
| |
| 84 | 79, 83 | ax-mp 5 |
. . . . . . 7
|
| 85 | csbov1g 6690 |
. . . . . . . 8
| |
| 86 | 79, 85 | ax-mp 5 |
. . . . . . 7
|
| 87 | 82, 84, 86 | 3eqtr3g 2679 |
. . . . . 6
|
| 88 | 87 | adantr 481 |
. . . . 5
|
| 89 | 60, 64, 65, 69, 73, 74, 88 | modmul12d 12724 |
. . . 4
|
| 90 | nfcsb1v 3549 |
. . . . . . . 8
| |
| 91 | 62 | zcnd 11483 |
. . . . . . . 8
|
| 92 | csbeq1a 3542 |
. . . . . . . 8
| |
| 93 | 68 | zcnd 11483 |
. . . . . . . 8
|
| 94 | 28, 90, 35, 37, 40, 91, 92, 93 | fprodsplitsn 14720 |
. . . . . . 7
|
| 95 | 94 | oveq1d 6665 |
. . . . . 6
|
| 96 | 95 | eqcomd 2628 |
. . . . 5
|
| 97 | 96 | adantr 481 |
. . . 4
|
| 98 | 58, 89, 97 | 3eqtrd 2660 |
. . 3
|
| 99 | 98 | ex 450 |
. 2
|
| 100 | 5, 10, 15, 20, 27, 99, 32 | findcard2d 8202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-prod 14636 |
| This theorem is referenced by: gausslemma2dlem5a 25095 |
| Copyright terms: Public domain | W3C validator |