MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem8 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem8 27170
Description: Lemma 8 for frgrncvvdeq 27173. This corresponds to statement 2 in [Huneke] p. 1: "The map is one-to-one since z in N(x) is uniquely determined as the common neighbor of x and a(x)". (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Revised by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem8 (𝜑𝐴:𝐷1-1𝑁)
Distinct variable groups:   𝑦,𝐷   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝜑,𝑦,𝑥   𝑦,𝐸   𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem8
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem4 27166 . 2 (𝜑𝐴:𝐷𝑁)
12 simpr 477 . . 3 ((𝜑𝐴:𝐷𝑁) → 𝐴:𝐷𝑁)
13 ffvelrn 6357 . . . . . . . . 9 ((𝐴:𝐷𝑁𝑢𝐷) → (𝐴𝑢) ∈ 𝑁)
1413ad2ant2lr 784 . . . . . . . 8 (((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) → (𝐴𝑢) ∈ 𝑁)
1514adantr 481 . . . . . . 7 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → (𝐴𝑢) ∈ 𝑁)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem1 27163 . . . . . . . . . . 11 (𝜑𝑋𝑁)
17 preq1 4268 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑢 → {𝑥, 𝑦} = {𝑢, 𝑦})
1817eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑢 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑢, 𝑦} ∈ 𝐸))
1918riotabidv 6613 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑢 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
2019cbvmptv 4750 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑢𝐷 ↦ (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
2110, 20eqtri 2644 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑢𝐷 ↦ (𝑦𝑁 {𝑢, 𝑦} ∈ 𝐸))
221, 2, 3, 4, 5, 6, 7, 8, 9, 21frgrncvvdeqlem6 27168 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝐷) → {𝑢, (𝐴𝑢)} ∈ 𝐸)
23 preq1 4268 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑤 → {𝑥, 𝑦} = {𝑤, 𝑦})
2423eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑤, 𝑦} ∈ 𝐸))
2524riotabidv 6613 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
2625cbvmptv 4750 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)) = (𝑤𝐷 ↦ (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
2710, 26eqtri 2644 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑤𝐷 ↦ (𝑦𝑁 {𝑤, 𝑦} ∈ 𝐸))
281, 2, 3, 4, 5, 6, 7, 8, 9, 27frgrncvvdeqlem6 27168 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐷) → {𝑤, (𝐴𝑤)} ∈ 𝐸)
2922, 28anim12dan 882 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸))
30 preq2 4269 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑤) = (𝐴𝑢) → {𝑤, (𝐴𝑤)} = {𝑤, (𝐴𝑢)})
3130eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑤) = (𝐴𝑢) → ({𝑤, (𝐴𝑤)} ∈ 𝐸 ↔ {𝑤, (𝐴𝑢)} ∈ 𝐸))
3231anbi2d 740 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑤) = (𝐴𝑢) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) ↔ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸)))
3332eqcoms 2630 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑢) = (𝐴𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) ↔ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸)))
3433biimpa 501 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑢) = (𝐴𝑤) ∧ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸)) → ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸))
35 df-ne 2795 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑤 ↔ ¬ 𝑢 = 𝑤)
362, 3frgrnbnb 27157 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ FriendGraph ∧ (𝑢𝐷𝑤𝐷) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
379, 36syl3an1 1359 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑢𝐷𝑤𝐷) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
38373expa 1265 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑢𝐷𝑤𝐷)) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝐴𝑢) = 𝑋))
39 df-nel 2898 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
40 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑋𝑁))
4140biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐴𝑢) = 𝑋 ∧ (𝐴𝑢) ∈ 𝑁) → 𝑋𝑁)
4241pm2.24d 147 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴𝑢) = 𝑋 ∧ (𝐴𝑢) ∈ 𝑁) → (¬ 𝑋𝑁𝑢 = 𝑤))
4342expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴𝑢) ∈ 𝑁 → ((𝐴𝑢) = 𝑋 → (¬ 𝑋𝑁𝑢 = 𝑤)))
4443com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑋𝑁 → ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4539, 44sylbi 207 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋𝑁 → ((𝐴𝑢) = 𝑋 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4645com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝑢) = 𝑋 → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
4738, 46syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢𝐷𝑤𝐷)) ∧ 𝑢𝑤) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))
4847expcom 451 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
4948com23 86 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑤 → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5035, 49sylbir 225 . . . . . . . . . . . . . . . . . 18 𝑢 = 𝑤 → (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑢)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5134, 50syl5com 31 . . . . . . . . . . . . . . . . 17 (((𝐴𝑢) = (𝐴𝑤) ∧ ({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸)) → (¬ 𝑢 = 𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5251expcom 451 . . . . . . . . . . . . . . . 16 (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5352com24 95 . . . . . . . . . . . . . . 15 (({𝑢, (𝐴𝑢)} ∈ 𝐸 ∧ {𝑤, (𝐴𝑤)} ∈ 𝐸) → ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5429, 53mpcom 38 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐷𝑤𝐷)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5554ex 450 . . . . . . . . . . . . 13 (𝜑 → ((𝑢𝐷𝑤𝐷) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5655com3r 87 . . . . . . . . . . . 12 𝑢 = 𝑤 → (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (𝑋𝑁 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5756com15 101 . . . . . . . . . . 11 (𝑋𝑁 → (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
5816, 57mpcom 38 . . . . . . . . . 10 (𝜑 → ((𝑢𝐷𝑤𝐷) → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))))
5958expd 452 . . . . . . . . 9 (𝜑 → (𝑢𝐷 → (𝑤𝐷 → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
6059adantr 481 . . . . . . . 8 ((𝜑𝐴:𝐷𝑁) → (𝑢𝐷 → (𝑤𝐷 → ((𝐴𝑢) = (𝐴𝑤) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤))))))
6160imp42 620 . . . . . . 7 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → (¬ 𝑢 = 𝑤 → ((𝐴𝑢) ∈ 𝑁𝑢 = 𝑤)))
6215, 61mpid 44 . . . . . 6 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → (¬ 𝑢 = 𝑤𝑢 = 𝑤))
6362pm2.18d 124 . . . . 5 ((((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) ∧ (𝐴𝑢) = (𝐴𝑤)) → 𝑢 = 𝑤)
6463ex 450 . . . 4 (((𝜑𝐴:𝐷𝑁) ∧ (𝑢𝐷𝑤𝐷)) → ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤))
6564ralrimivva 2971 . . 3 ((𝜑𝐴:𝐷𝑁) → ∀𝑢𝐷𝑤𝐷 ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤))
66 dff13 6512 . . 3 (𝐴:𝐷1-1𝑁 ↔ (𝐴:𝐷𝑁 ∧ ∀𝑢𝐷𝑤𝐷 ((𝐴𝑢) = (𝐴𝑤) → 𝑢 = 𝑤)))
6712, 65, 66sylanbrc 698 . 2 ((𝜑𝐴:𝐷𝑁) → 𝐴:𝐷1-1𝑁)
6811, 67mpdan 702 1 (𝜑𝐴:𝐷1-1𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wnel 2897  wral 2912  {cpr 4179  cmpt 4729  wf 5884  1-1wf1 5885  cfv 5888  crio 6610  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-frgr 27121
This theorem is referenced by:  frgrncvvdeqlem10  27172
  Copyright terms: Public domain W3C validator