MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreghash2wsp Structured version   Visualization version   GIF version

Theorem fusgreghash2wsp 27202
Description: In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in [Huneke] p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 19-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
fusgreghash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgreghash2wsp ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1)))))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem fusgreghash2wsp
Dummy variables 𝑎 𝑠 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgreghash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fveq1 6190 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠‘1) = (𝑡‘1))
32eqeq1d 2624 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠‘1) = 𝑎 ↔ (𝑡‘1) = 𝑎))
43cbvrabv 3199 . . . . . . 7 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎}
54mpteq2i 4741 . . . . . 6 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎})
61, 5fusgreg2wsp 27200 . . . . 5 (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
76ad2antrr 762 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
87fveq2d 6195 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘(2 WSPathsN 𝐺)) = (#‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
91fusgrvtxfi 26211 . . . . 5 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
10 eqeq2 2633 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑠‘1) = 𝑎 ↔ (𝑠‘1) = 𝑦))
1110rabbidv 3189 . . . . . . . 8 (𝑎 = 𝑦 → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
12 eqid 2622 . . . . . . . 8 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})
13 ovex 6678 . . . . . . . . 9 (2 WSPathsN 𝐺) ∈ V
1413rabex 4813 . . . . . . . 8 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ V
1511, 12, 14fvmpt 6282 . . . . . . 7 (𝑦𝑉 → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
1615adantl 482 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
17 eqid 2622 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1817fusgrvtxfi 26211 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
19 wspthnfi 26815 . . . . . . . 8 ((Vtx‘𝐺) ∈ Fin → (2 WSPathsN 𝐺) ∈ Fin)
20 rabfi 8185 . . . . . . . 8 ((2 WSPathsN 𝐺) ∈ Fin → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2118, 19, 203syl 18 . . . . . . 7 (𝐺 ∈ FinUSGraph → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2221adantr 481 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2316, 22eqeltrd 2701 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) ∈ Fin)
241, 52wspmdisj 27201 . . . . . 6 Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)
2524a1i 11 . . . . 5 (𝐺 ∈ FinUSGraph → Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
269, 23, 25hashiun 14554 . . . 4 (𝐺 ∈ FinUSGraph → (#‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
2726ad2antrr 762 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
281, 5fusgreghash2wspv 27199 . . . . . . . . 9 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
29 ralim 2948 . . . . . . . . 9 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3028, 29syl 17 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3130adantr 481 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3231imp 445 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)))
33 fveq2 6191 . . . . . . . . 9 (𝑣 = 𝑦 → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣) = ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
3433fveq2d 6195 . . . . . . . 8 (𝑣 = 𝑦 → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
3534eqeq1d 2624 . . . . . . 7 (𝑣 = 𝑦 → ((#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ↔ (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1))))
3635rspccva 3308 . . . . . 6 ((∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ∧ 𝑦𝑉) → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3732, 36sylan 488 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑦𝑉) → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3837sumeq2dv 14433 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (𝐾 · (𝐾 − 1)))
399adantr 481 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
40 eqid 2622 . . . . . . . . 9 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
411, 40fusgrregdegfi 26465 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾𝐾 ∈ ℕ0))
4241imp 445 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0)
4342nn0cnd 11353 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℂ)
44 kcnktkm1cn 10461 . . . . . 6 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
4543, 44syl 17 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
46 fsumconst 14522 . . . . 5 ((𝑉 ∈ Fin ∧ (𝐾 · (𝐾 − 1)) ∈ ℂ) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
4739, 45, 46syl2an2r 876 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
4838, 47eqtrd 2656 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
498, 27, 483eqtrd 2660 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
5049ex 450 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  c0 3915   ciun 4520  Disj wdisj 4620  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  1c1 9937   · cmul 9941  cmin 10266  2c2 11070  0cn0 11292  #chash 13117  Σcsu 14416  Vtxcvtx 25874   FinUSGraph cfusgr 26208  VtxDegcvtxdg 26361   WSPathsN cwwspthsn 26720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-vtxdg 26362  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsn 26725  df-wspthsnon 26726
This theorem is referenced by:  frrusgrord0  27204
  Copyright terms: Public domain W3C validator