Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsima Structured version   Visualization version   GIF version

Theorem ballotlemsima 30577
Description: The image by 𝑆 of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsima ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑖,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsima
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . . . . . 6 ((𝑆𝐶) “ (1...𝐽)) ⊆ ran (𝑆𝐶)
2 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
3 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
4 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (#‘𝑐) = 𝑀}
5 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((#‘𝑥) / (#‘𝑂)))
6 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((#‘((1...𝑖) ∩ 𝑐)) − (#‘((1...𝑖) ∖ 𝑐)))))
7 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
8 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
9 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
10 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
112, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsf1o 30575 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1211simpld 475 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
13 f1of 6137 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))⟶(1...(𝑀 + 𝑁)))
14 frn 6053 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))⟶(1...(𝑀 + 𝑁)) → ran (𝑆𝐶) ⊆ (1...(𝑀 + 𝑁)))
1512, 13, 143syl 18 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ran (𝑆𝐶) ⊆ (1...(𝑀 + 𝑁)))
161, 15syl5ss 3614 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (1...𝐽)) ⊆ (1...(𝑀 + 𝑁)))
17 fzssuz 12382 . . . . . 6 (1...(𝑀 + 𝑁)) ⊆ (ℤ‘1)
18 uzssz 11707 . . . . . 6 (ℤ‘1) ⊆ ℤ
1917, 18sstri 3612 . . . . 5 (1...(𝑀 + 𝑁)) ⊆ ℤ
2016, 19syl6ss 3615 . . . 4 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (1...𝐽)) ⊆ ℤ)
2120adantr 481 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) ⊆ ℤ)
2221sselda 3603 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ((𝑆𝐶) “ (1...𝐽))) → 𝑘 ∈ ℤ)
23 elfzelz 12342 . . 3 (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) → 𝑘 ∈ ℤ)
2423adantl 482 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) → 𝑘 ∈ ℤ)
25 f1ofn 6138 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶) Fn (1...(𝑀 + 𝑁)))
2612, 25syl 17 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) Fn (1...(𝑀 + 𝑁)))
2726adantr 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑆𝐶) Fn (1...(𝑀 + 𝑁)))
282, 3, 4, 5, 6, 7, 8, 9ballotlemiex 30563 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2928simpld 475 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
3029adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
31 elfzuz3 12339 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
3230, 31syl 17 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
33 elfzuz3 12339 . . . . . . . 8 (𝐽 ∈ (1...(𝐼𝐶)) → (𝐼𝐶) ∈ (ℤ𝐽))
3433adantl 482 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (ℤ𝐽))
35 uztrn 11704 . . . . . . 7 (((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) ∧ (𝐼𝐶) ∈ (ℤ𝐽)) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
3632, 34, 35syl2anc 693 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
37 fzss2 12381 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ𝐽) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
3836, 37syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
39 fvelimab 6253 . . . . 5 (((𝑆𝐶) Fn (1...(𝑀 + 𝑁)) ∧ (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
4027, 38, 39syl2anc 693 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
4140adantr 481 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
42 1zzd 11408 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ∈ ℤ)
432nnzi 11401 . . . . . . . . . . . . 13 𝑀 ∈ ℤ
443nnzi 11401 . . . . . . . . . . . . 13 𝑁 ∈ ℤ
45 zaddcl 11417 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
4643, 44, 45mp2an 708 . . . . . . . . . . . 12 (𝑀 + 𝑁) ∈ ℤ
4746a1i 11 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ ℤ)
48 elfzelz 12342 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ∈ ℤ)
4948adantl 482 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
50 elfzle1 12344 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝐼𝐶)) → 1 ≤ 𝐽)
5150adantl 482 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ≤ 𝐽)
5249zred 11482 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℝ)
53 elfzelz 12342 . . . . . . . . . . . . . . 15 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
5429, 53syl 17 . . . . . . . . . . . . . 14 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
5554adantr 481 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℤ)
5655zred 11482 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℝ)
5747zred 11482 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ ℝ)
58 elfzle2 12345 . . . . . . . . . . . . 13 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ≤ (𝐼𝐶))
5958adantl 482 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ≤ (𝐼𝐶))
60 elfzle2 12345 . . . . . . . . . . . . . 14 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
6129, 60syl 17 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
6261adantr 481 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
6352, 56, 57, 59, 62letrd 10194 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ≤ (𝑀 + 𝑁))
64 elfz4 12335 . . . . . . . . . . 11 (((1 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽 ≤ (𝑀 + 𝑁))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
6542, 47, 49, 51, 63, 64syl32anc 1334 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
662, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 30571 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
6765, 66syldan 487 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
68 simpr 477 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝐼𝐶)))
69 iftrue 4092 . . . . . . . . . 10 (𝐽 ≤ (𝐼𝐶) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) = (((𝐼𝐶) + 1) − 𝐽))
7068, 58, 693syl 18 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) = (((𝐼𝐶) + 1) − 𝐽))
7167, 70eqtrd 2656 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) = (((𝐼𝐶) + 1) − 𝐽))
7271oveq1d 6665 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) = ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶)))
7372eleq2d 2687 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ 𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶))))
7473adantr 481 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ 𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶))))
7554ad2antrr 762 . . . . . . . . 9 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝐼𝐶) ∈ ℤ)
7675zcnd 11483 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝐼𝐶) ∈ ℂ)
77 1cnd 10056 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 1 ∈ ℂ)
7876, 77pncand 10393 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (((𝐼𝐶) + 1) − 1) = (𝐼𝐶))
7978oveq2d 6666 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) = ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶)))
8079eleq2d 2687 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) ↔ 𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶))))
81 1zzd 11408 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 1 ∈ ℤ)
8248ad2antlr 763 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 𝐽 ∈ ℤ)
8375peano2zd 11485 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → ((𝐼𝐶) + 1) ∈ ℤ)
84 simpr 477 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
85 fzrev 12403 . . . . . 6 (((1 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝐼𝐶) + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) ↔ (((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽)))
8681, 82, 83, 84, 85syl22anc 1327 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) ↔ (((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽)))
8774, 80, 863bitr2d 296 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽)))
88 risset 3062 . . . . 5 ((((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽) ↔ ∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼𝐶) + 1) − 𝑘))
8988a1i 11 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → ((((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽) ↔ ∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼𝐶) + 1) − 𝑘)))
90 eqcom 2629 . . . . . . 7 ((((𝐼𝐶) + 1) − 𝑘) = 𝑗𝑗 = (((𝐼𝐶) + 1) − 𝑘))
9154ad2antrr 762 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℤ)
9291adantlr 751 . . . . . . . . . 10 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℤ)
9392zcnd 11483 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℂ)
94 1cnd 10056 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 1 ∈ ℂ)
9593, 94addcld 10059 . . . . . . . 8 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → ((𝐼𝐶) + 1) ∈ ℂ)
96 simplr 792 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑘 ∈ ℤ)
9796zcnd 11483 . . . . . . . 8 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑘 ∈ ℂ)
98 elfzelz 12342 . . . . . . . . . 10 (𝑗 ∈ (1...𝐽) → 𝑗 ∈ ℤ)
9998adantl 482 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℤ)
10099zcnd 11483 . . . . . . . 8 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℂ)
101 subsub23 10286 . . . . . . . 8 ((((𝐼𝐶) + 1) ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((((𝐼𝐶) + 1) − 𝑘) = 𝑗 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
10295, 97, 100, 101syl3anc 1326 . . . . . . 7 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → ((((𝐼𝐶) + 1) − 𝑘) = 𝑗 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
10390, 102syl5bbr 274 . . . . . 6 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝑗 = (((𝐼𝐶) + 1) − 𝑘) ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
104 simpll 790 . . . . . . . . . 10 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐶 ∈ (𝑂𝐸))
10538sselda 3603 . . . . . . . . . 10 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ (1...(𝑀 + 𝑁)))
1062, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 30571 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
107104, 105, 106syl2anc 693 . . . . . . . . 9 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
10898adantl 482 . . . . . . . . . . . 12 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℤ)
109108zred 11482 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℝ)
11048ad2antlr 763 . . . . . . . . . . . 12 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ∈ ℤ)
111110zred 11482 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ∈ ℝ)
11291zred 11482 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℝ)
113 elfzle2 12345 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝐽) → 𝑗𝐽)
114113adantl 482 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗𝐽)
11558ad2antlr 763 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ≤ (𝐼𝐶))
116109, 111, 112, 114, 115letrd 10194 . . . . . . . . . 10 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ≤ (𝐼𝐶))
117 iftrue 4092 . . . . . . . . . 10 (𝑗 ≤ (𝐼𝐶) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) = (((𝐼𝐶) + 1) − 𝑗))
118116, 117syl 17 . . . . . . . . 9 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) = (((𝐼𝐶) + 1) − 𝑗))
119107, 118eqtrd 2656 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → ((𝑆𝐶)‘𝑗) = (((𝐼𝐶) + 1) − 𝑗))
120119eqeq1d 2624 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (((𝑆𝐶)‘𝑗) = 𝑘 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
121120adantlr 751 . . . . . 6 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (((𝑆𝐶)‘𝑗) = 𝑘 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
122103, 121bitr4d 271 . . . . 5 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝑗 = (((𝐼𝐶) + 1) − 𝑘) ↔ ((𝑆𝐶)‘𝑗) = 𝑘))
123122rexbidva 3049 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼𝐶) + 1) − 𝑘) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
12487, 89, 1233bitrd 294 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
12541, 124bitr4d 271 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ 𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
12622, 24, 125eqrdav 2621 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  cdif 3571  cin 3573  wss 3574  ifcif 4086  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  ccnv 5113  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  infcinf 8347  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  cz 11377  cuz 11687  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlemfrc  30588
  Copyright terms: Public domain W3C validator