MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopn Structured version   Visualization version   GIF version

Theorem efopn 24404
Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
efopn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
efopn (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)

Proof of Theorem efopn
Dummy variables 𝑤 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efopn.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
21cnfldtopon 22586 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
3 toponss 20731 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆𝐽) → 𝑆 ⊆ ℂ)
42, 3mpan 706 . . . . . 6 (𝑆𝐽𝑆 ⊆ ℂ)
54sselda 3603 . . . . 5 ((𝑆𝐽𝑥𝑆) → 𝑥 ∈ ℂ)
6 cnxmet 22576 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
7 pirp 24213 . . . . . . 7 π ∈ ℝ+
81cnfldtopn 22585 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
98mopni3 22299 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) ∧ π ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
107, 9mpan2 707 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
116, 10mp3an1 1411 . . . . 5 ((𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
12 imass2 5501 . . . . . . . 8 ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))
13 imassrn 5477 . . . . . . . . . . . . . 14 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ran exp
14 eff 14812 . . . . . . . . . . . . . . 15 exp:ℂ⟶ℂ
15 frn 6053 . . . . . . . . . . . . . . 15 (exp:ℂ⟶ℂ → ran exp ⊆ ℂ)
1614, 15ax-mp 5 . . . . . . . . . . . . . 14 ran exp ⊆ ℂ
1713, 16sstri 3612 . . . . . . . . . . . . 13 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ
18 sseqin2 3817 . . . . . . . . . . . . 13 ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ ↔ (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
1917, 18mpbi 220 . . . . . . . . . . . 12 (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))
20 rpxr 11840 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21 blssm 22223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
226, 21mp3an1 1411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2320, 22sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2423ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2524sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ ℂ)
26 simp-4l 806 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
2725, 26subcld 10392 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ ℂ)
2827subid1d 10381 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) − 0) = (𝑦𝑥))
2928fveq2d 6195 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑦𝑥) − 0)) = (abs‘(𝑦𝑥)))
30 0cn 10032 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
31 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
3231cnmetdval 22574 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3327, 30, 32sylancl 694 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3431cnmetdval 22574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3525, 26, 34syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3629, 33, 353eqtr4d 2666 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (𝑦(abs ∘ − )𝑥))
37 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
386a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
39 simpllr 799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ+)
4039adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
4140rpxrd 11873 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
42 elbl3 22197 . . . . . . . . . . . . . . . . . . . . . 22 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4338, 41, 26, 25, 42syl22anc 1327 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4437, 43mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) < 𝑟)
4536, 44eqbrtrd 4675 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) < 𝑟)
46 0cnd 10033 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
47 elbl3 22197 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4838, 41, 46, 27, 47syl22anc 1327 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4945, 48mpbird 247 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟))
50 efsub 14830 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
5125, 26, 50syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
52 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝑦𝑥) → (exp‘𝑤) = (exp‘(𝑦𝑥)))
5352eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝑦𝑥) → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))))
5453rspcev 3309 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
5549, 51, 54syl2anc 693 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
56 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 ((exp‘𝑦) = 𝑧 → ((exp‘𝑦) / (exp‘𝑥)) = (𝑧 / (exp‘𝑥)))
5756eqeq2d 2632 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑦) = 𝑧 → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5857rexbidv 3052 . . . . . . . . . . . . . . . . 17 ((exp‘𝑦) = 𝑧 → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5955, 58syl5ibcom 235 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
6059rexlimdva 3031 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
61 eqcom 2629 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ (𝑧 / (exp‘𝑥)) = (exp‘𝑤))
62 simplr 792 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑧 ∈ ℂ)
63 simp-4l 806 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
64 efcl 14813 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ∈ ℂ)
6639rpxrd 11873 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ*)
67 blssm 22223 . . . . . . . . . . . . . . . . . . . . . . 23 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
686, 30, 67mp3an12 1414 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℝ* → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
6966, 68syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
7069sselda 3603 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ ℂ)
71 efcl 14813 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
7270, 71syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑤) ∈ ℂ)
73 efne0 14827 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7463, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ≠ 0)
7562, 65, 72, 74divmuld 10823 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑧 / (exp‘𝑥)) = (exp‘𝑤) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7661, 75syl5bb 272 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7763, 70pncan2d 10394 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = 𝑤)
7870subid1d 10381 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 − 0) = 𝑤)
7977, 78eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = (𝑤 − 0))
8079fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑥 + 𝑤) − 𝑥)) = (abs‘(𝑤 − 0)))
8163, 70addcld 10059 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ ℂ)
8231cnmetdval 22574 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 + 𝑤) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8381, 63, 82syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8431cnmetdval 22574 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8570, 30, 84sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8680, 83, 853eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (𝑤(abs ∘ − )0))
87 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟))
886a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8939adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
9089rpxrd 11873 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
91 0cnd 10033 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
92 elbl3 22197 . . . . . . . . . . . . . . . . . . . . . . 23 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9388, 90, 91, 70, 92syl22anc 1327 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9487, 93mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) < 𝑟)
9586, 94eqbrtrd 4675 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟)
96 elbl3 22197 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝑤) ∈ ℂ)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9788, 90, 63, 81, 96syl22anc 1327 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9895, 97mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
99 efadd 14824 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
10063, 70, 99syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
101 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 + 𝑤) → (exp‘𝑦) = (exp‘(𝑥 + 𝑤)))
102101eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 + 𝑤) → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))))
103102rspcev 3309 . . . . . . . . . . . . . . . . . . 19 (((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
10498, 100, 103syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
105 eqeq2 2633 . . . . . . . . . . . . . . . . . . 19 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘𝑦) = 𝑧))
106105rexbidv 3052 . . . . . . . . . . . . . . . . . 18 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
107104, 106syl5ibcom 235 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
10876, 107sylbid 230 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
109108rexlimdva 3031 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
11060, 109impbid 202 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
111 ffn 6045 . . . . . . . . . . . . . . . 16 (exp:ℂ⟶ℂ → exp Fn ℂ)
11214, 111ax-mp 5 . . . . . . . . . . . . . . 15 exp Fn ℂ
113 fvelimab 6253 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
114112, 24, 113sylancr 695 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
115 fvelimab 6253 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
116112, 69, 115sylancr 695 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
117110, 114, 1163bitr4d 300 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
118117rabbi2dva 3821 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
11919, 118syl5eqr 2670 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
120 eqid 2622 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) = (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥)))
121120mptpreima 5628 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))}
122119, 121syl6eqr 2674 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
12364ad2antrr 762 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ ℂ)
12473ad2antrr 762 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ≠ 0)
125120divccncf 22709 . . . . . . . . . . . . 13 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
126123, 124, 125syl2anc 693 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
1271cncfcn1 22713 . . . . . . . . . . . 12 (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
128126, 127syl6eleq 2711 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽))
1291efopnlem2 24403 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ+𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
130129adantll 750 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
131 cnima 21069 . . . . . . . . . . 11 (((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽) ∧ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
132128, 130, 131syl2anc 693 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
133122, 132eqeltrd 2701 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
134 blcntr 22218 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
1356, 134mp3an1 1411 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
136 ffun 6048 . . . . . . . . . . . . 13 (exp:ℂ⟶ℂ → Fun exp)
13714, 136ax-mp 5 . . . . . . . . . . . 12 Fun exp
13814fdmi 6052 . . . . . . . . . . . . 13 dom exp = ℂ
13923, 138syl6sseqr 3652 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp)
140 funfvima2 6493 . . . . . . . . . . . 12 ((Fun exp ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
141137, 139, 140sylancr 695 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
142135, 141mpd 15 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
143142adantr 481 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
144 eleq2 2690 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑥) ∈ 𝑦 ↔ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
145 sseq1 3626 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ⊆ (exp “ 𝑆) ↔ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆)))
146144, 145anbi12d 747 . . . . . . . . . . 11 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))))
147146rspcev 3309 . . . . . . . . . 10 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
148147expr 643 . . . . . . . . 9 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
149133, 143, 148syl2anc 693 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
15012, 149syl5 34 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
151150expimpd 629 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → ((𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
152151rexlimdva 3031 . . . . 5 (𝑥 ∈ ℂ → (∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
1535, 11, 152sylc 65 . . . 4 ((𝑆𝐽𝑥𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
154153ralrimiva 2966 . . 3 (𝑆𝐽 → ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
155 eleq1 2689 . . . . . . 7 (𝑧 = (exp‘𝑥) → (𝑧𝑦 ↔ (exp‘𝑥) ∈ 𝑦))
156155anbi1d 741 . . . . . 6 (𝑧 = (exp‘𝑥) → ((𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
157156rexbidv 3052 . . . . 5 (𝑧 = (exp‘𝑥) → (∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
158157ralima 6498 . . . 4 ((exp Fn ℂ ∧ 𝑆 ⊆ ℂ) → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
159112, 4, 158sylancr 695 . . 3 (𝑆𝐽 → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
160154, 159mpbird 247 . 2 (𝑆𝐽 → ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
1611cnfldtop 22587 . . 3 𝐽 ∈ Top
162 eltop2 20779 . . 3 (𝐽 ∈ Top → ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆))))
163161, 162ax-mp 5 . 2 ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
164160, 163sylibr 224 1 (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cmin 10266   / cdiv 10684  +crp 11832  abscabs 13974  expce 14792  πcpi 14797  TopOpenctopn 16082  ∞Metcxmt 19731  ballcbl 19733  fldccnfld 19746  Topctop 20698  TopOnctopon 20715   Cn ccn 21028  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator