MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagcon Structured version   Visualization version   GIF version

Theorem psrbagcon 19371
Description: The analogue of the statement "0 ≤ 𝐺𝐹 implies 0 ≤ 𝐹𝐺𝐹 " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagcon ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagcon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1067 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹𝐷)
2 psrbag.d . . . . . . . . . 10 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 19364 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
43adantr 481 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
51, 4mpbid 222 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
65simpld 475 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹:𝐼⟶ℕ0)
7 ffn 6045 . . . . . 6 (𝐹:𝐼⟶ℕ0𝐹 Fn 𝐼)
86, 7syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹 Fn 𝐼)
9 simpr2 1068 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺:𝐼⟶ℕ0)
10 ffn 6045 . . . . . 6 (𝐺:𝐼⟶ℕ0𝐺 Fn 𝐼)
119, 10syl 17 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺 Fn 𝐼)
12 simpl 473 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐼𝑉)
13 inidm 3822 . . . . 5 (𝐼𝐼) = 𝐼
148, 11, 12, 12, 13offn 6908 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) Fn 𝐼)
15 eqidd 2623 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
16 eqidd 2623 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
178, 11, 12, 12, 13, 15, 16ofval 6906 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑓𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
18 simpr3 1069 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺𝑟𝐹)
1911, 8, 12, 12, 13, 16, 15ofrfval 6905 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺𝑟𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
2018, 19mpbid 222 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
2120r19.21bi 2932 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
229ffvelrnda 6359 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
236ffvelrnda 6359 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
24 nn0sub 11343 . . . . . . . 8 (((𝐺𝑥) ∈ ℕ0 ∧ (𝐹𝑥) ∈ ℕ0) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2522, 23, 24syl2anc 693 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2621, 25mpbid 222 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0)
2717, 26eqeltrd 2701 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0)
2827ralrimiva 2966 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0)
29 ffnfv 6388 . . . 4 ((𝐹𝑓𝐺):𝐼⟶ℕ0 ↔ ((𝐹𝑓𝐺) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0))
3014, 28, 29sylanbrc 698 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺):𝐼⟶ℕ0)
315simprd 479 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹 “ ℕ) ∈ Fin)
3222nn0ge0d 11354 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → 0 ≤ (𝐺𝑥))
33 nn0re 11301 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℕ0 → (𝐹𝑥) ∈ ℝ)
34 nn0re 11301 . . . . . . . . . 10 ((𝐺𝑥) ∈ ℕ0 → (𝐺𝑥) ∈ ℝ)
35 subge02 10544 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3633, 34, 35syl2an 494 . . . . . . . . 9 (((𝐹𝑥) ∈ ℕ0 ∧ (𝐺𝑥) ∈ ℕ0) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3723, 22, 36syl2anc 693 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3832, 37mpbid 222 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3938ralrimiva 2966 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
4014, 8, 12, 12, 13, 17, 15ofrfval 6905 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∘𝑟𝐹 ↔ ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
4139, 40mpbird 247 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) ∘𝑟𝐹)
422psrbaglesupp 19368 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷 ∧ (𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4312, 1, 30, 41, 42syl13anc 1328 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
44 ssfi 8180 . . . 4 (((𝐹 “ ℕ) ∈ Fin ∧ ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ)) → ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)
4531, 43, 44syl2anc 693 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)
462psrbag 19364 . . . 4 (𝐼𝑉 → ((𝐹𝑓𝐺) ∈ 𝐷 ↔ ((𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)))
4746adantr 481 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ↔ ((𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)))
4830, 45, 47mpbir2and 957 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) ∈ 𝐷)
4948, 41jca 554 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  wss 3574   class class class wbr 4653  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896  𝑚 cmap 7857  Fincfn 7955  cr 9935  0cc0 9936  cle 10075  cmin 10266  cn 11020  0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293
This theorem is referenced by:  psrbagconcl  19373  psrbagconf1o  19374  gsumbagdiaglem  19375  psrmulcllem  19387  psrlidm  19403  psrridm  19404  psrass1  19405  psrcom  19409
  Copyright terms: Public domain W3C validator