| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumbagdiaglem | Structured version Visualization version Unicode version | ||
| Description: Lemma for gsumbagdiag 19376. (Contributed by Mario Carneiro, 5-Jan-2015.) |
| Ref | Expression |
|---|---|
| psrbag.d |
|
| psrbagconf1o.1 |
|
| gsumbagdiag.i |
|
| gsumbagdiag.f |
|
| Ref | Expression |
|---|---|
| gsumbagdiaglem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 796 |
. . . . 5
| |
| 2 | breq1 4656 |
. . . . . 6
| |
| 3 | 2 | elrab 3363 |
. . . . 5
|
| 4 | 1, 3 | sylib 208 |
. . . 4
|
| 5 | 4 | simpld 475 |
. . 3
|
| 6 | 4 | simprd 479 |
. . . 4
|
| 7 | gsumbagdiag.i |
. . . . . . 7
| |
| 8 | 7 | adantr 481 |
. . . . . 6
|
| 9 | gsumbagdiag.f |
. . . . . . 7
| |
| 10 | 9 | adantr 481 |
. . . . . 6
|
| 11 | simprl 794 |
. . . . . . . . 9
| |
| 12 | breq1 4656 |
. . . . . . . . . 10
| |
| 13 | psrbagconf1o.1 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | elrab2 3366 |
. . . . . . . . 9
|
| 15 | 11, 14 | sylib 208 |
. . . . . . . 8
|
| 16 | 15 | simpld 475 |
. . . . . . 7
|
| 17 | psrbag.d |
. . . . . . . 8
| |
| 18 | 17 | psrbagf 19365 |
. . . . . . 7
|
| 19 | 8, 16, 18 | syl2anc 693 |
. . . . . 6
|
| 20 | 15 | simprd 479 |
. . . . . 6
|
| 21 | 17 | psrbagcon 19371 |
. . . . . 6
|
| 22 | 8, 10, 19, 20, 21 | syl13anc 1328 |
. . . . 5
|
| 23 | 22 | simprd 479 |
. . . 4
|
| 24 | 17 | psrbagf 19365 |
. . . . . 6
|
| 25 | 8, 5, 24 | syl2anc 693 |
. . . . 5
|
| 26 | 22 | simpld 475 |
. . . . . 6
|
| 27 | 17 | psrbagf 19365 |
. . . . . 6
|
| 28 | 8, 26, 27 | syl2anc 693 |
. . . . 5
|
| 29 | 17 | psrbagf 19365 |
. . . . . 6
|
| 30 | 8, 10, 29 | syl2anc 693 |
. . . . 5
|
| 31 | nn0re 11301 |
. . . . . . 7
| |
| 32 | nn0re 11301 |
. . . . . . 7
| |
| 33 | nn0re 11301 |
. . . . . . 7
| |
| 34 | letr 10131 |
. . . . . . 7
| |
| 35 | 31, 32, 33, 34 | syl3an 1368 |
. . . . . 6
|
| 36 | 35 | adantl 482 |
. . . . 5
|
| 37 | 8, 25, 28, 30, 36 | caoftrn 6932 |
. . . 4
|
| 38 | 6, 23, 37 | mp2and 715 |
. . 3
|
| 39 | breq1 4656 |
. . . 4
| |
| 40 | 39, 13 | elrab2 3366 |
. . 3
|
| 41 | 5, 38, 40 | sylanbrc 698 |
. 2
|
| 42 | 19 | ffvelrnda 6359 |
. . . . . . 7
|
| 43 | 25 | ffvelrnda 6359 |
. . . . . . 7
|
| 44 | 30 | ffvelrnda 6359 |
. . . . . . 7
|
| 45 | nn0re 11301 |
. . . . . . . 8
| |
| 46 | nn0re 11301 |
. . . . . . . 8
| |
| 47 | nn0re 11301 |
. . . . . . . 8
| |
| 48 | leaddsub2 10505 |
. . . . . . . . 9
| |
| 49 | leaddsub 10504 |
. . . . . . . . 9
| |
| 50 | 48, 49 | bitr3d 270 |
. . . . . . . 8
|
| 51 | 45, 46, 47, 50 | syl3an 1368 |
. . . . . . 7
|
| 52 | 42, 43, 44, 51 | syl3anc 1326 |
. . . . . 6
|
| 53 | 52 | ralbidva 2985 |
. . . . 5
|
| 54 | ovexd 6680 |
. . . . . 6
| |
| 55 | 25 | feqmptd 6249 |
. . . . . 6
|
| 56 | ffn 6045 |
. . . . . . . 8
| |
| 57 | 30, 56 | syl 17 |
. . . . . . 7
|
| 58 | ffn 6045 |
. . . . . . . 8
| |
| 59 | 19, 58 | syl 17 |
. . . . . . 7
|
| 60 | inidm 3822 |
. . . . . . 7
| |
| 61 | eqidd 2623 |
. . . . . . 7
| |
| 62 | eqidd 2623 |
. . . . . . 7
| |
| 63 | 57, 59, 8, 8, 60, 61, 62 | offval 6904 |
. . . . . 6
|
| 64 | 8, 43, 54, 55, 63 | ofrfval2 6915 |
. . . . 5
|
| 65 | ovexd 6680 |
. . . . . 6
| |
| 66 | 19 | feqmptd 6249 |
. . . . . 6
|
| 67 | ffn 6045 |
. . . . . . . 8
| |
| 68 | 25, 67 | syl 17 |
. . . . . . 7
|
| 69 | eqidd 2623 |
. . . . . . 7
| |
| 70 | 57, 68, 8, 8, 60, 61, 69 | offval 6904 |
. . . . . 6
|
| 71 | 8, 42, 65, 66, 70 | ofrfval2 6915 |
. . . . 5
|
| 72 | 53, 64, 71 | 3bitr4d 300 |
. . . 4
|
| 73 | 6, 72 | mpbid 222 |
. . 3
|
| 74 | breq1 4656 |
. . . 4
| |
| 75 | 74 | elrab 3363 |
. . 3
|
| 76 | 16, 73, 75 | sylanbrc 698 |
. 2
|
| 77 | 41, 76 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 |
| This theorem is referenced by: gsumbagdiag 19376 psrass1lem 19377 |
| Copyright terms: Public domain | W3C validator |