MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Visualization version   GIF version

Theorem psrass1lem 19377
Description: A group sum commutation used by psrass1 19405. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
gsumbagdiag.i (𝜑𝐼𝑉)
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑋𝐵)
psrass1lem.y (𝑘 = (𝑛𝑓𝑗) → 𝑋 = 𝑌)
Assertion
Ref Expression
psrass1lem (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)))))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑛,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑛,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑓,𝐼,𝑛,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑛,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑛,𝑥,𝑦   𝑓,𝑋,𝑛,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑛)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑛)

Proof of Theorem psrass1lem
Dummy variables 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 psrbagconf1o.1 . . . 4 𝑆 = {𝑦𝐷𝑦𝑟𝐹}
3 gsumbagdiag.i . . . 4 (𝜑𝐼𝑉)
4 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
5 gsumbagdiag.b . . . 4 𝐵 = (Base‘𝐺)
6 gsumbagdiag.g . . . 4 (𝜑𝐺 ∈ CMnd)
71, 2, 3, 4gsumbagdiaglem 19375 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}))
8 gsumbagdiag.x . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑋𝐵)
98anassrs 680 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑋𝐵)
10 eqid 2622 . . . . . . . . . . 11 (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)
119, 10fmptd 6385 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
123adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → 𝐼𝑉)
13 ssrab2 3687 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦𝑟𝐹} ⊆ 𝐷
142, 13eqsstri 3635 . . . . . . . . . . . . 13 𝑆𝐷
154adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑆) → 𝐹𝐷)
16 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑆) → 𝑗𝑆)
171, 2psrbagconcl 19373 . . . . . . . . . . . . . 14 ((𝐼𝑉𝐹𝐷𝑗𝑆) → (𝐹𝑓𝑗) ∈ 𝑆)
1812, 15, 16, 17syl3anc 1326 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → (𝐹𝑓𝑗) ∈ 𝑆)
1914, 18sseldi 3601 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → (𝐹𝑓𝑗) ∈ 𝐷)
20 eqid 2622 . . . . . . . . . . . . 13 {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} = {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}
211, 20psrbagconf1o 19374 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝐹𝑓𝑗) ∈ 𝐷) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}–1-1-onto→{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
2212, 19, 21syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}–1-1-onto→{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
23 f1of 6137 . . . . . . . . . . 11 ((𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}–1-1-onto→{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
2422, 23syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
25 fco 6058 . . . . . . . . . 10 (((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵 ∧ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
2611, 24, 25syl2anc 693 . . . . . . . . 9 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
2712adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐼𝑉)
2815adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐹𝐷)
291psrbagf 19365 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
3027, 28, 29syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐹:𝐼⟶ℕ0)
3130ffvelrnda 6359 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
3216adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗𝑆)
3314, 32sseldi 3601 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗𝐷)
341psrbagf 19365 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑗𝐷) → 𝑗:𝐼⟶ℕ0)
3527, 33, 34syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗:𝐼⟶ℕ0)
3635ffvelrnda 6359 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
37 ssrab2 3687 . . . . . . . . . . . . . . . . . 18 {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ⊆ 𝐷
38 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
3937, 38sseldi 3601 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚𝐷)
401psrbagf 19365 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑚𝐷) → 𝑚:𝐼⟶ℕ0)
4127, 39, 40syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚:𝐼⟶ℕ0)
4241ffvelrnda 6359 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (𝑚𝑧) ∈ ℕ0)
43 nn0cn 11302 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℂ)
44 nn0cn 11302 . . . . . . . . . . . . . . . 16 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
45 nn0cn 11302 . . . . . . . . . . . . . . . 16 ((𝑚𝑧) ∈ ℕ0 → (𝑚𝑧) ∈ ℂ)
46 sub32 10315 . . . . . . . . . . . . . . . 16 (((𝐹𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ ∧ (𝑚𝑧) ∈ ℂ) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4743, 44, 45, 46syl3an 1368 . . . . . . . . . . . . . . 15 (((𝐹𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0 ∧ (𝑚𝑧) ∈ ℕ0) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4831, 36, 42, 47syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4948mpteq2dva 4744 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
50 ovexd 6680 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑗𝑧)) ∈ V)
5130feqmptd 6249 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝐹 = (𝑧𝐼 ↦ (𝐹𝑧)))
5235feqmptd 6249 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
5327, 31, 36, 51, 52offval2 6914 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝐹𝑓𝑗) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑗𝑧))))
5441feqmptd 6249 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → 𝑚 = (𝑧𝐼 ↦ (𝑚𝑧)))
5527, 50, 42, 53, 54offval2 6914 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))))
56 ovexd 6680 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑚𝑧)) ∈ V)
5727, 31, 42, 51, 54offval2 6914 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝐹𝑓𝑚) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑚𝑧))))
5827, 56, 36, 57, 52offval2 6914 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
5949, 55, 583eqtr4d 2666 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) = ((𝐹𝑓𝑚) ∘𝑓𝑗))
6019adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → (𝐹𝑓𝑗) ∈ 𝐷)
611, 20psrbagconcl 19373 . . . . . . . . . . . . 13 ((𝐼𝑉 ∧ (𝐹𝑓𝑗) ∈ 𝐷𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
6227, 60, 38, 61syl3anc 1326 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑗) ∘𝑓𝑚) ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
6359, 62eqeltrrd 2702 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
6459mpteq2dva 4744 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)) = (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗)))
65 nfcv 2764 . . . . . . . . . . . . 13 𝑛𝑋
66 nfcsb1v 3549 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝑋
67 csbeq1a 3542 . . . . . . . . . . . . 13 (𝑘 = 𝑛𝑋 = 𝑛 / 𝑘𝑋)
6865, 66, 67cbvmpt 4749 . . . . . . . . . . . 12 (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑛 / 𝑘𝑋)
6968a1i 11 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑛 / 𝑘𝑋))
70 csbeq1 3536 . . . . . . . . . . 11 (𝑛 = ((𝐹𝑓𝑚) ∘𝑓𝑗) → 𝑛 / 𝑘𝑋 = ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
7163, 64, 69, 70fmptco 6396 . . . . . . . . . 10 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))) = (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))
7271feq1d 6030 . . . . . . . . 9 ((𝜑𝑗𝑆) → (((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚))):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵))
7326, 72mpbid 222 . . . . . . . 8 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
74 eqid 2622 . . . . . . . . 9 (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) = (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
7574fmpt 6381 . . . . . . . 8 (∀𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}⟶𝐵)
7673, 75sylibr 224 . . . . . . 7 ((𝜑𝑗𝑆) → ∀𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
7776r19.21bi 2932 . . . . . 6 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
7877anasss 679 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
797, 78syldan 487 . . . 4 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
801, 2, 3, 4, 5, 6, 79gsumbagdiag 19376 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
81 eqid 2622 . . . 4 (0g𝐺) = (0g𝐺)
821psrbaglefi 19372 . . . . . 6 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
833, 4, 82syl2anc 693 . . . . 5 (𝜑 → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
842, 83syl5eqel 2705 . . . 4 (𝜑𝑆 ∈ Fin)
853adantr 481 . . . . 5 ((𝜑𝑚𝑆) → 𝐼𝑉)
864adantr 481 . . . . . . 7 ((𝜑𝑚𝑆) → 𝐹𝐷)
87 simpr 477 . . . . . . 7 ((𝜑𝑚𝑆) → 𝑚𝑆)
881, 2psrbagconcl 19373 . . . . . . 7 ((𝐼𝑉𝐹𝐷𝑚𝑆) → (𝐹𝑓𝑚) ∈ 𝑆)
8985, 86, 87, 88syl3anc 1326 . . . . . 6 ((𝜑𝑚𝑆) → (𝐹𝑓𝑚) ∈ 𝑆)
9014, 89sseldi 3601 . . . . 5 ((𝜑𝑚𝑆) → (𝐹𝑓𝑚) ∈ 𝐷)
911psrbaglefi 19372 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑓𝑚) ∈ 𝐷) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ Fin)
9285, 90, 91syl2anc 693 . . . 4 ((𝜑𝑚𝑆) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ Fin)
93 xpfi 8231 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
9484, 84, 93syl2anc 693 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
95 simprl 794 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → 𝑚𝑆)
967simpld 475 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → 𝑗𝑆)
97 brxp 5147 . . . . . . 7 (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚𝑆𝑗𝑆))
9895, 96, 97sylanbrc 698 . . . . . 6 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗)
9998pm2.24d 147 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺)))
10099impr 649 . . . 4 ((𝜑 ∧ ((𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺))
1015, 81, 6, 84, 92, 79, 94, 100gsum2d2 18373 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
1021psrbaglefi 19372 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑓𝑗) ∈ 𝐷) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ Fin)
10312, 19, 102syl2anc 693 . . . 4 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ Fin)
104 simprl 794 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑗𝑆)
1051, 2, 3, 4gsumbagdiaglem 19375 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}))
106105simpld 475 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑚𝑆)
107 brxp 5147 . . . . . . 7 (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗𝑆𝑚𝑆))
108104, 106, 107sylanbrc 698 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚)
109108pm2.24d 147 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺)))
110109impr 649 . . . 4 ((𝜑 ∧ ((𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋 = (0g𝐺))
1115, 81, 6, 84, 103, 78, 94, 110gsum2d2 18373 . . 3 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
11280, 101, 1113eqtr3d 2664 . 2 (𝜑 → (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
1136adantr 481 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐺 ∈ CMnd)
11479anassrs 680 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ 𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}) → ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋𝐵)
115 eqid 2622 . . . . . . . . 9 (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) = (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
116114, 115fmptd 6385 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋):{𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}⟶𝐵)
117 ovex 6678 . . . . . . . . . . . 12 (ℕ0𝑚 𝐼) ∈ V
1181, 117rabex2 4815 . . . . . . . . . . 11 𝐷 ∈ V
119118a1i 11 . . . . . . . . . 10 ((𝜑𝑚𝑆) → 𝐷 ∈ V)
120 rabexg 4812 . . . . . . . . . 10 (𝐷 ∈ V → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ V)
121 mptexg 6484 . . . . . . . . . 10 ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ V → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∈ V)
122119, 120, 1213syl 18 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∈ V)
123 funmpt 5926 . . . . . . . . . 10 Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
124123a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))
125 fvexd 6203 . . . . . . . . 9 ((𝜑𝑚𝑆) → (0g𝐺) ∈ V)
126 suppssdm 7308 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ dom (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
127115dmmptss 5631 . . . . . . . . . . 11 dom (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}
128126, 127sstri 3612 . . . . . . . . . 10 ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)}
129128a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})
130 suppssfifsupp 8290 . . . . . . . . 9 ((((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) finSupp (0g𝐺))
131122, 124, 125, 92, 129, 130syl32anc 1334 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋) finSupp (0g𝐺))
1325, 81, 113, 92, 116, 131gsumcl 18316 . . . . . . 7 ((𝜑𝑚𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)) ∈ 𝐵)
133 eqid 2622 . . . . . . 7 (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
134132, 133fmptd 6385 . . . . . 6 (𝜑 → (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))):𝑆𝐵)
1351, 2psrbagconf1o 19374 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆)
1363, 4, 135syl2anc 693 . . . . . . 7 (𝜑 → (𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆)
137 f1ocnv 6149 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆)
138 f1of 6137 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆𝑆)
139136, 137, 1383syl 18 . . . . . 6 (𝜑(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆𝑆)
140 fco 6058 . . . . . 6 (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))):𝑆𝐵(𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆𝑆) → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))):𝑆𝐵)
141134, 139, 140syl2anc 693 . . . . 5 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))):𝑆𝐵)
142 coass 5654 . . . . . . . 8 (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))))
143 f1ococnv2 6163 . . . . . . . . . 10 ((𝑚𝑆 ↦ (𝐹𝑓𝑚)):𝑆1-1-onto𝑆 → ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ( I ↾ 𝑆))
144136, 143syl 17 . . . . . . . . 9 (𝜑 → ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ( I ↾ 𝑆))
145144coeq2d 5284 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹𝑓𝑚)) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚)))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
146142, 145syl5eq 2668 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
147 eqidd 2623 . . . . . . . . 9 (𝜑 → (𝑚𝑆 ↦ (𝐹𝑓𝑚)) = (𝑚𝑆 ↦ (𝐹𝑓𝑚)))
148 eqidd 2623 . . . . . . . . 9 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
149 breq2 4657 . . . . . . . . . . . 12 (𝑛 = (𝐹𝑓𝑚) → (𝑥𝑟𝑛𝑥𝑟 ≤ (𝐹𝑓𝑚)))
150149rabbidv 3189 . . . . . . . . . . 11 (𝑛 = (𝐹𝑓𝑚) → {𝑥𝐷𝑥𝑟𝑛} = {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)})
151 ovex 6678 . . . . . . . . . . . . 13 (𝑛𝑓𝑗) ∈ V
152 psrass1lem.y . . . . . . . . . . . . 13 (𝑘 = (𝑛𝑓𝑗) → 𝑋 = 𝑌)
153151, 152csbie 3559 . . . . . . . . . . . 12 (𝑛𝑓𝑗) / 𝑘𝑋 = 𝑌
154 oveq1 6657 . . . . . . . . . . . . 13 (𝑛 = (𝐹𝑓𝑚) → (𝑛𝑓𝑗) = ((𝐹𝑓𝑚) ∘𝑓𝑗))
155154csbeq1d 3540 . . . . . . . . . . . 12 (𝑛 = (𝐹𝑓𝑚) → (𝑛𝑓𝑗) / 𝑘𝑋 = ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
156153, 155syl5eqr 2670 . . . . . . . . . . 11 (𝑛 = (𝐹𝑓𝑚) → 𝑌 = ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)
157150, 156mpteq12dv 4733 . . . . . . . . . 10 (𝑛 = (𝐹𝑓𝑚) → (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))
158157oveq2d 6666 . . . . . . . . 9 (𝑛 = (𝐹𝑓𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
15989, 147, 148, 158fmptco 6396 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))))
160159coeq1d 5283 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))))
161 coires1 5653 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ↾ 𝑆)
162 ssid 3624 . . . . . . . . . 10 𝑆𝑆
163 resmpt 5449 . . . . . . . . . 10 (𝑆𝑆 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
164162, 163ax-mp 5 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
165161, 164eqtri 2644 . . . . . . . 8 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
166165a1i 11 . . . . . . 7 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
167146, 160, 1663eqtr3d 2664 . . . . . 6 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
168167feq1d 6030 . . . . 5 (𝜑 → (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚))):𝑆𝐵 ↔ (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))):𝑆𝐵))
169141, 168mpbid 222 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))):𝑆𝐵)
170 rabexg 4812 . . . . . . . 8 (𝐷 ∈ V → {𝑦𝐷𝑦𝑟𝐹} ∈ V)
171118, 170mp1i 13 . . . . . . 7 (𝜑 → {𝑦𝐷𝑦𝑟𝐹} ∈ V)
1722, 171syl5eqel 2705 . . . . . 6 (𝜑𝑆 ∈ V)
173 mptexg 6484 . . . . . 6 (𝑆 ∈ V → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∈ V)
174172, 173syl 17 . . . . 5 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∈ V)
175 funmpt 5926 . . . . . 6 Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
176175a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))))
177 fvexd 6203 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
178 suppssdm 7308 . . . . . . 7 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
179 eqid 2622 . . . . . . . 8 (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))
180179dmmptss 5631 . . . . . . 7 dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ⊆ 𝑆
181178, 180sstri 3612 . . . . . 6 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆
182181a1i 11 . . . . 5 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)
183 suppssfifsupp 8290 . . . . 5 ((((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∧ (0g𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)) → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) finSupp (0g𝐺))
184174, 176, 177, 84, 182, 183syl32anc 1334 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) finSupp (0g𝐺))
1855, 81, 6, 84, 169, 184, 136gsumf1o 18317 . . 3 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚)))))
186159oveq2d 6666 . . 3 (𝜑 → (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹𝑓𝑚)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
187185, 186eqtrd 2656 . 2 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑚)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
1886adantr 481 . . . . . 6 ((𝜑𝑗𝑆) → 𝐺 ∈ CMnd)
189118a1i 11 . . . . . . . 8 ((𝜑𝑗𝑆) → 𝐷 ∈ V)
190 rabexg 4812 . . . . . . . 8 (𝐷 ∈ V → {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ V)
191 mptexg 6484 . . . . . . . 8 ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ V → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∈ V)
192189, 190, 1913syl 18 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∈ V)
193 funmpt 5926 . . . . . . . 8 Fun (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)
194193a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → Fun (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋))
195 fvexd 6203 . . . . . . 7 ((𝜑𝑗𝑆) → (0g𝐺) ∈ V)
196 suppssdm 7308 . . . . . . . . 9 ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ dom (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)
19710dmmptss 5631 . . . . . . . . 9 dom (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}
198196, 197sstri 3612 . . . . . . . 8 ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)}
199198a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})
200 suppssfifsupp 8290 . . . . . . 7 ((((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)})) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) finSupp (0g𝐺))
201192, 194, 195, 103, 199, 200syl32anc 1334 . . . . . 6 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) finSupp (0g𝐺))
2025, 81, 188, 103, 11, 201, 22gsumf1o 18317 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)))))
20371oveq2d 6666 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑗) ∘𝑓𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
204202, 203eqtrd 2656 . . . 4 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))
205204mpteq2dva 4744 . . 3 (𝜑 → (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋))) = (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋))))
206205oveq2d 6666 . 2 (𝜑 → (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ ((𝐹𝑓𝑚) ∘𝑓𝑗) / 𝑘𝑋)))))
207112, 187, 2063eqtr4d 2666 1 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥𝑟𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥𝑟 ≤ (𝐹𝑓𝑗)} ↦ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  csb 3533  wss 3574   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  ccom 5118  Fun wfun 5882  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  𝑟 cofr 6896   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  cc 9934  cle 10075  cmin 10266  cn 11020  0cn0 11292  Basecbs 15857  0gc0g 16100   Σg cgsu 16101  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  psrass1  19405
  Copyright terms: Public domain W3C validator