HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hcau Structured version   Visualization version   GIF version

Theorem h2hcau 27836
Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hc.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hc.2 𝑈 ∈ NrmCVec
h2hc.3 ℋ = (BaseSet‘𝑈)
h2hc.4 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
h2hcau Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ))

Proof of Theorem h2hcau
Dummy variables 𝑓 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . 2 {𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥} = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
2 df-hcau 27830 . 2 Cauchy = {𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥}
3 elin 3796 . . . 4 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ)))
4 ancom 466 . . . 4 ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)))
5 h2hc.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
65hlex 27754 . . . . . . 7 ℋ ∈ V
7 nnex 11026 . . . . . . 7 ℕ ∈ V
86, 7elmap 7886 . . . . . 6 (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶ ℋ)
9 nnuz 11723 . . . . . . . 8 ℕ = (ℤ‘1)
10 h2hc.2 . . . . . . . . 9 𝑈 ∈ NrmCVec
11 h2hc.4 . . . . . . . . . 10 𝐷 = (IndMet‘𝑈)
125, 11imsxmet 27547 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1310, 12mp1i 13 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
14 1zzd 11408 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
15 eqidd 2623 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
16 eqidd 2623 . . . . . . . 8 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) = (𝑓𝑗))
17 id 22 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
189, 13, 14, 15, 16, 17iscauf 23078 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥))
19 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (𝑓𝑗) ∈ ℋ)
2019adantr 481 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑗) ∈ ℋ)
21 eluznn 11758 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
22 ffvelrn 6357 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
2321, 22sylan2 491 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ ℋ ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝑓𝑘) ∈ ℋ)
2423anassrs 680 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑓𝑘) ∈ ℋ)
25 h2hc.1 . . . . . . . . . . . . 13 𝑈 = ⟨⟨ + , · ⟩, norm
2625, 10, 5, 11h2hmetdval 27835 . . . . . . . . . . . 12 (((𝑓𝑗) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2720, 24, 26syl2anc 693 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑓𝑗)𝐷(𝑓𝑘)) = (norm‘((𝑓𝑗) − (𝑓𝑘))))
2827breq1d 4663 . . . . . . . . . 10 (((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ (norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
2928ralbidva 2985 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3029rexbidva 3049 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3130ralbidv 2986 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑗)𝐷(𝑓𝑘)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3218, 31bitrd 268 . . . . . 6 (𝑓:ℕ⟶ ℋ → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
338, 32sylbi 207 . . . . 5 (𝑓 ∈ ( ℋ ↑𝑚 ℕ) → (𝑓 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3433pm5.32i 669 . . . 4 ((𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ 𝑓 ∈ (Cau‘𝐷)) ↔ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
353, 4, 343bitri 286 . . 3 (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥))
3635abbi2i 2738 . 2 ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) = {𝑓 ∣ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑗) − (𝑓𝑘))) < 𝑥)}
371, 2, 363eqtr4i 2654 1 Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  {crab 2916  cin 3573  cop 4183   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  1c1 9937   < clt 10074  cn 11020  cuz 11687  +crp 11832  ∞Metcxmt 19731  Caucca 23051  NrmCVeccnv 27439  BaseSetcba 27441  IndMetcims 27446  chil 27776   + cva 27777   · csm 27778  normcno 27780   cmv 27782  Cauchyccau 27783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-cau 23054  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-hvsub 27828  df-hcau 27830
This theorem is referenced by:  axhcompl-zf  27855  hhcau  28055
  Copyright terms: Public domain W3C validator