![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashpw | Structured version Visualization version GIF version |
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) |
Ref | Expression |
---|---|
hashpw | ⊢ (𝐴 ∈ Fin → (#‘𝒫 𝐴) = (2↑(#‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4161 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | fveq2d 6195 | . . 3 ⊢ (𝑥 = 𝐴 → (#‘𝒫 𝑥) = (#‘𝒫 𝐴)) |
3 | fveq2 6191 | . . . 4 ⊢ (𝑥 = 𝐴 → (#‘𝑥) = (#‘𝐴)) | |
4 | 3 | oveq2d 6666 | . . 3 ⊢ (𝑥 = 𝐴 → (2↑(#‘𝑥)) = (2↑(#‘𝐴))) |
5 | 2, 4 | eqeq12d 2637 | . 2 ⊢ (𝑥 = 𝐴 → ((#‘𝒫 𝑥) = (2↑(#‘𝑥)) ↔ (#‘𝒫 𝐴) = (2↑(#‘𝐴)))) |
6 | vex 3203 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 6 | pw2en 8067 | . . . 4 ⊢ 𝒫 𝑥 ≈ (2𝑜 ↑𝑚 𝑥) |
8 | pwfi 8261 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
9 | 8 | biimpi 206 | . . . . 5 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
10 | df2o2 7574 | . . . . . . 7 ⊢ 2𝑜 = {∅, {∅}} | |
11 | prfi 8235 | . . . . . . 7 ⊢ {∅, {∅}} ∈ Fin | |
12 | 10, 11 | eqeltri 2697 | . . . . . 6 ⊢ 2𝑜 ∈ Fin |
13 | mapfi 8262 | . . . . . 6 ⊢ ((2𝑜 ∈ Fin ∧ 𝑥 ∈ Fin) → (2𝑜 ↑𝑚 𝑥) ∈ Fin) | |
14 | 12, 13 | mpan 706 | . . . . 5 ⊢ (𝑥 ∈ Fin → (2𝑜 ↑𝑚 𝑥) ∈ Fin) |
15 | hashen 13135 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ Fin ∧ (2𝑜 ↑𝑚 𝑥) ∈ Fin) → ((#‘𝒫 𝑥) = (#‘(2𝑜 ↑𝑚 𝑥)) ↔ 𝒫 𝑥 ≈ (2𝑜 ↑𝑚 𝑥))) | |
16 | 9, 14, 15 | syl2anc 693 | . . . 4 ⊢ (𝑥 ∈ Fin → ((#‘𝒫 𝑥) = (#‘(2𝑜 ↑𝑚 𝑥)) ↔ 𝒫 𝑥 ≈ (2𝑜 ↑𝑚 𝑥))) |
17 | 7, 16 | mpbiri 248 | . . 3 ⊢ (𝑥 ∈ Fin → (#‘𝒫 𝑥) = (#‘(2𝑜 ↑𝑚 𝑥))) |
18 | hashmap 13222 | . . . . 5 ⊢ ((2𝑜 ∈ Fin ∧ 𝑥 ∈ Fin) → (#‘(2𝑜 ↑𝑚 𝑥)) = ((#‘2𝑜)↑(#‘𝑥))) | |
19 | 12, 18 | mpan 706 | . . . 4 ⊢ (𝑥 ∈ Fin → (#‘(2𝑜 ↑𝑚 𝑥)) = ((#‘2𝑜)↑(#‘𝑥))) |
20 | hash2 13193 | . . . . 5 ⊢ (#‘2𝑜) = 2 | |
21 | 20 | oveq1i 6660 | . . . 4 ⊢ ((#‘2𝑜)↑(#‘𝑥)) = (2↑(#‘𝑥)) |
22 | 19, 21 | syl6eq 2672 | . . 3 ⊢ (𝑥 ∈ Fin → (#‘(2𝑜 ↑𝑚 𝑥)) = (2↑(#‘𝑥))) |
23 | 17, 22 | eqtrd 2656 | . 2 ⊢ (𝑥 ∈ Fin → (#‘𝒫 𝑥) = (2↑(#‘𝑥))) |
24 | 5, 23 | vtoclga 3272 | 1 ⊢ (𝐴 ∈ Fin → (#‘𝒫 𝐴) = (2↑(#‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∅c0 3915 𝒫 cpw 4158 {csn 4177 {cpr 4179 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 2𝑜c2o 7554 ↑𝑚 cmap 7857 ≈ cen 7952 Fincfn 7955 2c2 11070 ↑cexp 12860 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-exp 12861 df-hash 13118 |
This theorem is referenced by: ackbijnn 14560 |
Copyright terms: Public domain | W3C validator |