MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbijnn Structured version   Visualization version   GIF version

Theorem ackbijnn 14560
Description: Translate the Ackermann bijection ackbij1 9060 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
ackbijnn.1 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
Assertion
Ref Expression
ackbijnn 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem ackbijnn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashgval2 13167 . . . 4 (# ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
21hashgf1o 12770 . . 3 (# ↾ ω):ω–1-1-onto→ℕ0
3 sneq 4187 . . . . . . . . . 10 (𝑤 = 𝑦 → {𝑤} = {𝑦})
4 pweq 4161 . . . . . . . . . 10 (𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦)
53, 4xpeq12d 5140 . . . . . . . . 9 (𝑤 = 𝑦 → ({𝑤} × 𝒫 𝑤) = ({𝑦} × 𝒫 𝑦))
65cbviunv 4559 . . . . . . . 8 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑧 ({𝑦} × 𝒫 𝑦)
7 iuneq1 4534 . . . . . . . 8 (𝑧 = 𝑥 𝑦𝑧 ({𝑦} × 𝒫 𝑦) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
86, 7syl5eq 2668 . . . . . . 7 (𝑧 = 𝑥 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑦𝑥 ({𝑦} × 𝒫 𝑦))
98fveq2d 6195 . . . . . 6 (𝑧 = 𝑥 → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109cbvmptv 4750 . . . . 5 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
1110ackbij1 9060 . . . 4 (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω
12 f1ocnv 6149 . . . . . 6 ((# ↾ ω):ω–1-1-onto→ℕ0(# ↾ ω):ℕ01-1-onto→ω)
132, 12ax-mp 5 . . . . 5 (# ↾ ω):ℕ01-1-onto→ω
14 f1opwfi 8270 . . . . 5 ((# ↾ ω):ℕ01-1-onto→ω → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin))
1513, 14ax-mp 5 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)
16 f1oco 6159 . . . 4 (((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))):(𝒫 ω ∩ Fin)–1-1-onto→ω ∧ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin)) → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω)
1711, 15, 16mp2an 708 . . 3 ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω
18 f1oco 6159 . . 3 (((# ↾ ω):ω–1-1-onto→ℕ0 ∧ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ω) → ((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
192, 17, 18mp2an 708 . 2 ((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
20 inss2 3834 . . . . . . . . . 10 (𝒫 ω ∩ Fin) ⊆ Fin
21 f1of 6137 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)–1-1-onto→(𝒫 ω ∩ Fin) → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2215, 21ax-mp 5 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin)
23 eqid 2622 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥))
2423fmpt 6381 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((# ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin) ↔ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)):(𝒫 ℕ0 ∩ Fin)⟶(𝒫 ω ∩ Fin))
2522, 24mpbir 221 . . . . . . . . . . 11 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)((# ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin)
2625rspec 2931 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((# ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
2720, 26sseldi 3601 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((# ↾ ω) “ 𝑥) ∈ Fin)
28 snfi 8038 . . . . . . . . . . 11 {𝑤} ∈ Fin
29 cnvimass 5485 . . . . . . . . . . . . . . 15 ((# ↾ ω) “ 𝑥) ⊆ dom (# ↾ ω)
30 dmhashres 13129 . . . . . . . . . . . . . . 15 dom (# ↾ ω) = ω
3129, 30sseqtri 3637 . . . . . . . . . . . . . 14 ((# ↾ ω) “ 𝑥) ⊆ ω
32 onfin2 8152 . . . . . . . . . . . . . . 15 ω = (On ∩ Fin)
33 inss2 3834 . . . . . . . . . . . . . . 15 (On ∩ Fin) ⊆ Fin
3432, 33eqsstri 3635 . . . . . . . . . . . . . 14 ω ⊆ Fin
3531, 34sstri 3612 . . . . . . . . . . . . 13 ((# ↾ ω) “ 𝑥) ⊆ Fin
36 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((# ↾ ω) “ 𝑥)) → 𝑤 ∈ ((# ↾ ω) “ 𝑥))
3735, 36sseldi 3601 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((# ↾ ω) “ 𝑥)) → 𝑤 ∈ Fin)
38 pwfi 8261 . . . . . . . . . . . 12 (𝑤 ∈ Fin ↔ 𝒫 𝑤 ∈ Fin)
3937, 38sylib 208 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((# ↾ ω) “ 𝑥)) → 𝒫 𝑤 ∈ Fin)
40 xpfi 8231 . . . . . . . . . . 11 (({𝑤} ∈ Fin ∧ 𝒫 𝑤 ∈ Fin) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4128, 39, 40sylancr 695 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((# ↾ ω) “ 𝑥)) → ({𝑤} × 𝒫 𝑤) ∈ Fin)
4241ralrimiva 2966 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ∀𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
43 iunfi 8254 . . . . . . . . 9 ((((# ↾ ω) “ 𝑥) ∈ Fin ∧ ∀𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin) → 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
4427, 42, 43syl2anc 693 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin)
45 ficardom 8787 . . . . . . . 8 ( 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
4644, 45syl 17 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
47 fvres 6207 . . . . . . 7 ((card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω → ((# ↾ ω)‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (#‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
4846, 47syl 17 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((# ↾ ω)‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (#‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
49 hashcard 13146 . . . . . . 7 ( 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤) ∈ Fin → (#‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (#‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
5044, 49syl 17 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (#‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = (#‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
51 xp1st 7198 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) ∈ {𝑤})
52 elsni 4194 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑤} → (1st𝑧) = 𝑤)
5351, 52syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑤} × 𝒫 𝑤) → (1st𝑧) = 𝑤)
5453rgen 2922 . . . . . . . . . 10 𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
5554rgenw 2924 . . . . . . . . 9 𝑤 ∈ ((# ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤
56 invdisj 4638 . . . . . . . . 9 (∀𝑤 ∈ ((# ↾ ω) “ 𝑥)∀𝑧 ∈ ({𝑤} × 𝒫 𝑤)(1st𝑧) = 𝑤Disj 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5755, 56mp1i 13 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Disj 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
5827, 41, 57hashiun 14554 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (#‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑤 ∈ ((# ↾ ω) “ 𝑥)(#‘({𝑤} × 𝒫 𝑤)))
59 sneq 4187 . . . . . . . . . 10 (𝑤 = ((# ↾ ω)‘𝑦) → {𝑤} = {((# ↾ ω)‘𝑦)})
60 pweq 4161 . . . . . . . . . 10 (𝑤 = ((# ↾ ω)‘𝑦) → 𝒫 𝑤 = 𝒫 ((# ↾ ω)‘𝑦))
6159, 60xpeq12d 5140 . . . . . . . . 9 (𝑤 = ((# ↾ ω)‘𝑦) → ({𝑤} × 𝒫 𝑤) = ({((# ↾ ω)‘𝑦)} × 𝒫 ((# ↾ ω)‘𝑦)))
6261fveq2d 6195 . . . . . . . 8 (𝑤 = ((# ↾ ω)‘𝑦) → (#‘({𝑤} × 𝒫 𝑤)) = (#‘({((# ↾ ω)‘𝑦)} × 𝒫 ((# ↾ ω)‘𝑦))))
63 inss2 3834 . . . . . . . . 9 (𝒫 ℕ0 ∩ Fin) ⊆ Fin
6463sseli 3599 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ Fin)
65 f1of1 6136 . . . . . . . . . 10 ((# ↾ ω):ℕ01-1-onto→ω → (# ↾ ω):ℕ01-1→ω)
6613, 65ax-mp 5 . . . . . . . . 9 (# ↾ ω):ℕ01-1→ω
67 inss1 3833 . . . . . . . . . . 11 (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0
6867sseli 3599 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ∈ 𝒫 ℕ0)
6968elpwid 4170 . . . . . . . . 9 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → 𝑥 ⊆ ℕ0)
70 f1ores 6151 . . . . . . . . 9 (((# ↾ ω):ℕ01-1→ω ∧ 𝑥 ⊆ ℕ0) → ((# ↾ ω) ↾ 𝑥):𝑥1-1-onto→((# ↾ ω) “ 𝑥))
7166, 69, 70sylancr 695 . . . . . . . 8 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((# ↾ ω) ↾ 𝑥):𝑥1-1-onto→((# ↾ ω) “ 𝑥))
72 fvres 6207 . . . . . . . . 9 (𝑦𝑥 → (((# ↾ ω) ↾ 𝑥)‘𝑦) = ((# ↾ ω)‘𝑦))
7372adantl 482 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (((# ↾ ω) ↾ 𝑥)‘𝑦) = ((# ↾ ω)‘𝑦))
74 hashcl 13147 . . . . . . . . 9 (({𝑤} × 𝒫 𝑤) ∈ Fin → (#‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0)
75 nn0cn 11302 . . . . . . . . 9 ((#‘({𝑤} × 𝒫 𝑤)) ∈ ℕ0 → (#‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7641, 74, 753syl 18 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑤 ∈ ((# ↾ ω) “ 𝑥)) → (#‘({𝑤} × 𝒫 𝑤)) ∈ ℂ)
7762, 64, 71, 73, 76fsumf1o 14454 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑤 ∈ ((# ↾ ω) “ 𝑥)(#‘({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (#‘({((# ↾ ω)‘𝑦)} × 𝒫 ((# ↾ ω)‘𝑦))))
78 snfi 8038 . . . . . . . . . 10 {((# ↾ ω)‘𝑦)} ∈ Fin
7969sselda 3603 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ ℕ0)
80 f1of 6137 . . . . . . . . . . . . . . 15 ((# ↾ ω):ℕ01-1-onto→ω → (# ↾ ω):ℕ0⟶ω)
8113, 80ax-mp 5 . . . . . . . . . . . . . 14 (# ↾ ω):ℕ0⟶ω
8281ffvelrni 6358 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ((# ↾ ω)‘𝑦) ∈ ω)
8379, 82syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((# ↾ ω)‘𝑦) ∈ ω)
8434, 83sseldi 3601 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((# ↾ ω)‘𝑦) ∈ Fin)
85 pwfi 8261 . . . . . . . . . . 11 (((# ↾ ω)‘𝑦) ∈ Fin ↔ 𝒫 ((# ↾ ω)‘𝑦) ∈ Fin)
8684, 85sylib 208 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → 𝒫 ((# ↾ ω)‘𝑦) ∈ Fin)
87 hashxp 13221 . . . . . . . . . 10 (({((# ↾ ω)‘𝑦)} ∈ Fin ∧ 𝒫 ((# ↾ ω)‘𝑦) ∈ Fin) → (#‘({((# ↾ ω)‘𝑦)} × 𝒫 ((# ↾ ω)‘𝑦))) = ((#‘{((# ↾ ω)‘𝑦)}) · (#‘𝒫 ((# ↾ ω)‘𝑦))))
8878, 86, 87sylancr 695 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (#‘({((# ↾ ω)‘𝑦)} × 𝒫 ((# ↾ ω)‘𝑦))) = ((#‘{((# ↾ ω)‘𝑦)}) · (#‘𝒫 ((# ↾ ω)‘𝑦))))
89 hashsng 13159 . . . . . . . . . . 11 (((# ↾ ω)‘𝑦) ∈ ω → (#‘{((# ↾ ω)‘𝑦)}) = 1)
9083, 89syl 17 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (#‘{((# ↾ ω)‘𝑦)}) = 1)
91 hashpw 13223 . . . . . . . . . . . 12 (((# ↾ ω)‘𝑦) ∈ Fin → (#‘𝒫 ((# ↾ ω)‘𝑦)) = (2↑(#‘((# ↾ ω)‘𝑦))))
9284, 91syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (#‘𝒫 ((# ↾ ω)‘𝑦)) = (2↑(#‘((# ↾ ω)‘𝑦))))
93 fvres 6207 . . . . . . . . . . . . . 14 (((# ↾ ω)‘𝑦) ∈ ω → ((# ↾ ω)‘((# ↾ ω)‘𝑦)) = (#‘((# ↾ ω)‘𝑦)))
9483, 93syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((# ↾ ω)‘((# ↾ ω)‘𝑦)) = (#‘((# ↾ ω)‘𝑦)))
95 f1ocnvfv2 6533 . . . . . . . . . . . . . 14 (((# ↾ ω):ω–1-1-onto→ℕ0𝑦 ∈ ℕ0) → ((# ↾ ω)‘((# ↾ ω)‘𝑦)) = 𝑦)
962, 79, 95sylancr 695 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((# ↾ ω)‘((# ↾ ω)‘𝑦)) = 𝑦)
9794, 96eqtr3d 2658 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (#‘((# ↾ ω)‘𝑦)) = 𝑦)
9897oveq2d 6666 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑(#‘((# ↾ ω)‘𝑦))) = (2↑𝑦))
9992, 98eqtrd 2656 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (#‘𝒫 ((# ↾ ω)‘𝑦)) = (2↑𝑦))
10090, 99oveq12d 6668 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → ((#‘{((# ↾ ω)‘𝑦)}) · (#‘𝒫 ((# ↾ ω)‘𝑦))) = (1 · (2↑𝑦)))
101 2cn 11091 . . . . . . . . . . 11 2 ∈ ℂ
102 expcl 12878 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℂ)
103101, 79, 102sylancr 695 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (2↑𝑦) ∈ ℂ)
104103mulid2d 10058 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (1 · (2↑𝑦)) = (2↑𝑦))
10588, 100, 1043eqtrd 2660 . . . . . . . 8 ((𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ∧ 𝑦𝑥) → (#‘({((# ↾ ω)‘𝑦)} × 𝒫 ((# ↾ ω)‘𝑦))) = (2↑𝑦))
106105sumeq2dv 14433 . . . . . . 7 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → Σ𝑦𝑥 (#‘({((# ↾ ω)‘𝑦)} × 𝒫 ((# ↾ ω)‘𝑦))) = Σ𝑦𝑥 (2↑𝑦))
10758, 77, 1063eqtrd 2660 . . . . . 6 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → (#‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) = Σ𝑦𝑥 (2↑𝑦))
10848, 50, 1073eqtrd 2660 . . . . 5 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) → ((# ↾ ω)‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))) = Σ𝑦𝑥 (2↑𝑦))
109108mpteq2ia 4740 . . . 4 (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω)‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
11046adantl 482 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → (card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) ∈ ω)
11126adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (𝒫 ℕ0 ∩ Fin)) → ((# ↾ ω) “ 𝑥) ∈ (𝒫 ω ∩ Fin))
112 eqidd 2623 . . . . . . 7 (⊤ → (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))
113 eqidd 2623 . . . . . . 7 (⊤ → (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) = (𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))))
114 iuneq1 4534 . . . . . . . 8 (𝑧 = ((# ↾ ω) “ 𝑥) → 𝑤𝑧 ({𝑤} × 𝒫 𝑤) = 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))
115114fveq2d 6195 . . . . . . 7 (𝑧 = ((# ↾ ω) “ 𝑥) → (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤)) = (card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))
116111, 112, 113, 115fmptco 6396 . . . . . 6 (⊤ → ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ (card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
117 f1of 6137 . . . . . . . 8 ((# ↾ ω):ω–1-1-onto→ℕ0 → (# ↾ ω):ω⟶ℕ0)
1182, 117mp1i 13 . . . . . . 7 (⊤ → (# ↾ ω):ω⟶ℕ0)
119118feqmptd 6249 . . . . . 6 (⊤ → (# ↾ ω) = (𝑦 ∈ ω ↦ ((# ↾ ω)‘𝑦)))
120 fveq2 6191 . . . . . 6 (𝑦 = (card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)) → ((# ↾ ω)‘𝑦) = ((# ↾ ω)‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
121110, 116, 119, 120fmptco 6396 . . . . 5 (⊤ → ((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω)‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤)))))
122121trud 1493 . . . 4 ((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω)‘(card‘ 𝑤 ∈ ((# ↾ ω) “ 𝑥)({𝑤} × 𝒫 𝑤))))
123 ackbijnn.1 . . . 4 𝐹 = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑦𝑥 (2↑𝑦))
124109, 122, 1233eqtr4i 2654 . . 3 ((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))) = 𝐹
125 f1oeq1 6127 . . 3 (((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))) = 𝐹 → (((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0))
126124, 125ax-mp 5 . 2 (((# ↾ ω) ∘ ((𝑧 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑤𝑧 ({𝑤} × 𝒫 𝑤))) ∘ (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ ((# ↾ ω) “ 𝑥)))):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
12719, 126mpbi 220 1 𝐹:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wtru 1484  wcel 1990  wral 2912  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   ciun 4520  Disj wdisj 4620  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  ccom 5118  Oncon0 5723  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  ωcom 7065  1st c1st 7166  Fincfn 7955  cardccrd 8761  cc 9934  1c1 9937   · cmul 9941  2c2 11070  0cn0 11292  cexp 12860  #chash 13117  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  bitsinv2  15165
  Copyright terms: Public domain W3C validator