| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 6657 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑎 ↑𝑚 𝐵) = (𝐴 ↑𝑚 𝐵)) |
| 2 | 1 | fveq2d 6195 |
. . . . 5
⊢ (𝑎 = 𝐴 → (#‘(𝑎 ↑𝑚 𝐵)) = (#‘(𝐴 ↑𝑚 𝐵))) |
| 3 | | fveq2 6191 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (#‘𝑎) = (#‘𝐴)) |
| 4 | 3 | oveq1d 6665 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((#‘𝑎)↑(#‘𝐵)) = ((#‘𝐴)↑(#‘𝐵))) |
| 5 | 2, 4 | eqeq12d 2637 |
. . . 4
⊢ (𝑎 = 𝐴 → ((#‘(𝑎 ↑𝑚 𝐵)) = ((#‘𝑎)↑(#‘𝐵)) ↔ (#‘(𝐴 ↑𝑚 𝐵)) = ((#‘𝐴)↑(#‘𝐵)))) |
| 6 | 5 | imbi2d 330 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝐵 ∈ Fin → (#‘(𝑎 ↑𝑚
𝐵)) = ((#‘𝑎)↑(#‘𝐵))) ↔ (𝐵 ∈ Fin → (#‘(𝐴 ↑𝑚
𝐵)) = ((#‘𝐴)↑(#‘𝐵))))) |
| 7 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑎 ↑𝑚
𝑥) = (𝑎 ↑𝑚
∅)) |
| 8 | 7 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = ∅ →
(#‘(𝑎
↑𝑚 𝑥)) = (#‘(𝑎 ↑𝑚
∅))) |
| 9 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (#‘𝑥) =
(#‘∅)) |
| 10 | 9 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = ∅ →
((#‘𝑎)↑(#‘𝑥)) = ((#‘𝑎)↑(#‘∅))) |
| 11 | 8, 10 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = ∅ →
((#‘(𝑎
↑𝑚 𝑥)) = ((#‘𝑎)↑(#‘𝑥)) ↔ (#‘(𝑎 ↑𝑚 ∅)) =
((#‘𝑎)↑(#‘∅)))) |
| 12 | 11 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = ∅ → ((𝑎 ∈ Fin →
(#‘(𝑎
↑𝑚 𝑥)) = ((#‘𝑎)↑(#‘𝑥))) ↔ (𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
∅)) = ((#‘𝑎)↑(#‘∅))))) |
| 13 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑎 ↑𝑚 𝑥) = (𝑎 ↑𝑚 𝑦)) |
| 14 | 13 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (#‘(𝑎 ↑𝑚 𝑥)) = (#‘(𝑎 ↑𝑚
𝑦))) |
| 15 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦)) |
| 16 | 15 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((#‘𝑎)↑(#‘𝑥)) = ((#‘𝑎)↑(#‘𝑦))) |
| 17 | 14, 16 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((#‘(𝑎 ↑𝑚 𝑥)) = ((#‘𝑎)↑(#‘𝑥)) ↔ (#‘(𝑎 ↑𝑚
𝑦)) = ((#‘𝑎)↑(#‘𝑦)))) |
| 18 | 17 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
𝑥)) = ((#‘𝑎)↑(#‘𝑥))) ↔ (𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
𝑦)) = ((#‘𝑎)↑(#‘𝑦))))) |
| 19 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑎 ↑𝑚 𝑥) = (𝑎 ↑𝑚 (𝑦 ∪ {𝑧}))) |
| 20 | 19 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (#‘(𝑎 ↑𝑚 𝑥)) = (#‘(𝑎 ↑𝑚
(𝑦 ∪ {𝑧})))) |
| 21 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (#‘𝑥) = (#‘(𝑦 ∪ {𝑧}))) |
| 22 | 21 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((#‘𝑎)↑(#‘𝑥)) = ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧})))) |
| 23 | 20, 22 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((#‘(𝑎 ↑𝑚 𝑥)) = ((#‘𝑎)↑(#‘𝑥)) ↔ (#‘(𝑎 ↑𝑚
(𝑦 ∪ {𝑧}))) = ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧}))))) |
| 24 | 23 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
𝑥)) = ((#‘𝑎)↑(#‘𝑥))) ↔ (𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
(𝑦 ∪ {𝑧}))) = ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧})))))) |
| 25 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝑎 ↑𝑚 𝑥) = (𝑎 ↑𝑚 𝐵)) |
| 26 | 25 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (#‘(𝑎 ↑𝑚 𝑥)) = (#‘(𝑎 ↑𝑚
𝐵))) |
| 27 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (#‘𝑥) = (#‘𝐵)) |
| 28 | 27 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((#‘𝑎)↑(#‘𝑥)) = ((#‘𝑎)↑(#‘𝐵))) |
| 29 | 26, 28 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((#‘(𝑎 ↑𝑚 𝑥)) = ((#‘𝑎)↑(#‘𝑥)) ↔ (#‘(𝑎 ↑𝑚
𝐵)) = ((#‘𝑎)↑(#‘𝐵)))) |
| 30 | 29 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
𝑥)) = ((#‘𝑎)↑(#‘𝑥))) ↔ (𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
𝐵)) = ((#‘𝑎)↑(#‘𝐵))))) |
| 31 | | hashcl 13147 |
. . . . . . . . 9
⊢ (𝑎 ∈ Fin →
(#‘𝑎) ∈
ℕ0) |
| 32 | 31 | nn0cnd 11353 |
. . . . . . . 8
⊢ (𝑎 ∈ Fin →
(#‘𝑎) ∈
ℂ) |
| 33 | 32 | exp0d 13002 |
. . . . . . 7
⊢ (𝑎 ∈ Fin →
((#‘𝑎)↑0) =
1) |
| 34 | 33 | eqcomd 2628 |
. . . . . 6
⊢ (𝑎 ∈ Fin → 1 =
((#‘𝑎)↑0)) |
| 35 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
| 36 | | map0e 7895 |
. . . . . . . . . 10
⊢ (𝑎 ∈ V → (𝑎 ↑𝑚
∅) = 1𝑜) |
| 37 | 35, 36 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑎 ↑𝑚
∅) = 1𝑜 |
| 38 | | df1o2 7572 |
. . . . . . . . 9
⊢
1𝑜 = {∅} |
| 39 | 37, 38 | eqtri 2644 |
. . . . . . . 8
⊢ (𝑎 ↑𝑚
∅) = {∅} |
| 40 | 39 | fveq2i 6194 |
. . . . . . 7
⊢
(#‘(𝑎
↑𝑚 ∅)) = (#‘{∅}) |
| 41 | | 0ex 4790 |
. . . . . . . 8
⊢ ∅
∈ V |
| 42 | | hashsng 13159 |
. . . . . . . 8
⊢ (∅
∈ V → (#‘{∅}) = 1) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . 7
⊢
(#‘{∅}) = 1 |
| 44 | 40, 43 | eqtri 2644 |
. . . . . 6
⊢
(#‘(𝑎
↑𝑚 ∅)) = 1 |
| 45 | | hash0 13158 |
. . . . . . 7
⊢
(#‘∅) = 0 |
| 46 | 45 | oveq2i 6661 |
. . . . . 6
⊢
((#‘𝑎)↑(#‘∅)) = ((#‘𝑎)↑0) |
| 47 | 34, 44, 46 | 3eqtr4g 2681 |
. . . . 5
⊢ (𝑎 ∈ Fin →
(#‘(𝑎
↑𝑚 ∅)) = ((#‘𝑎)↑(#‘∅))) |
| 48 | | oveq1 6657 |
. . . . . . . 8
⊢
((#‘(𝑎
↑𝑚 𝑦)) = ((#‘𝑎)↑(#‘𝑦)) → ((#‘(𝑎 ↑𝑚 𝑦)) · (#‘𝑎)) = (((#‘𝑎)↑(#‘𝑦)) · (#‘𝑎))) |
| 49 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 50 | | snex 4908 |
. . . . . . . . . . . . 13
⊢ {𝑧} ∈ V |
| 51 | 49, 50, 35 | 3pm3.2i 1239 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝑎 ∈ V) |
| 52 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ¬ 𝑧 ∈ 𝑦) |
| 53 | | disjsn 4246 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 54 | 52, 53 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑦 ∩ {𝑧}) = ∅) |
| 55 | | mapunen 8129 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ V ∧ {𝑧} ∈ V ∧ 𝑎 ∈ V) ∧ (𝑦 ∩ {𝑧}) = ∅) → (𝑎 ↑𝑚 (𝑦 ∪ {𝑧})) ≈ ((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧}))) |
| 56 | 51, 54, 55 | sylancr 695 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑎 ↑𝑚 (𝑦 ∪ {𝑧})) ≈ ((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧}))) |
| 57 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑎 ∈ Fin) |
| 58 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → 𝑦 ∈ Fin) |
| 59 | | snfi 8038 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ∈ Fin |
| 60 | | unfi 8227 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 61 | 58, 59, 60 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 62 | | mapfi 8262 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (𝑎 ↑𝑚 (𝑦 ∪ {𝑧})) ∈ Fin) |
| 63 | 57, 61, 62 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑎 ↑𝑚 (𝑦 ∪ {𝑧})) ∈ Fin) |
| 64 | | mapfi 8262 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑎 ↑𝑚
𝑦) ∈
Fin) |
| 65 | 64 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑎 ↑𝑚 𝑦) ∈ Fin) |
| 66 | | mapfi 8262 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑎 ↑𝑚
{𝑧}) ∈
Fin) |
| 67 | 57, 59, 66 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (𝑎 ↑𝑚 {𝑧}) ∈ Fin) |
| 68 | | xpfi 8231 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ↑𝑚
𝑦) ∈ Fin ∧ (𝑎 ↑𝑚
{𝑧}) ∈ Fin) →
((𝑎
↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧})) ∈ Fin) |
| 69 | 65, 67, 68 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧})) ∈ Fin) |
| 70 | | hashen 13135 |
. . . . . . . . . . . 12
⊢ (((𝑎 ↑𝑚
(𝑦 ∪ {𝑧})) ∈ Fin ∧ ((𝑎 ↑𝑚
𝑦) × (𝑎 ↑𝑚
{𝑧})) ∈ Fin) →
((#‘(𝑎
↑𝑚 (𝑦 ∪ {𝑧}))) = (#‘((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧}))) ↔ (𝑎 ↑𝑚 (𝑦 ∪ {𝑧})) ≈ ((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧})))) |
| 71 | 63, 69, 70 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘(𝑎 ↑𝑚 (𝑦 ∪ {𝑧}))) = (#‘((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧}))) ↔ (𝑎 ↑𝑚 (𝑦 ∪ {𝑧})) ≈ ((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧})))) |
| 72 | 56, 71 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘(𝑎 ↑𝑚 (𝑦 ∪ {𝑧}))) = (#‘((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧})))) |
| 73 | | hashxp 13221 |
. . . . . . . . . . . 12
⊢ (((𝑎 ↑𝑚
𝑦) ∈ Fin ∧ (𝑎 ↑𝑚
{𝑧}) ∈ Fin) →
(#‘((𝑎
↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧}))) = ((#‘(𝑎 ↑𝑚
𝑦)) ·
(#‘(𝑎
↑𝑚 {𝑧})))) |
| 74 | 65, 67, 73 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧}))) = ((#‘(𝑎 ↑𝑚
𝑦)) ·
(#‘(𝑎
↑𝑚 {𝑧})))) |
| 75 | | vex 3203 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 76 | 35, 75 | mapsnen 8035 |
. . . . . . . . . . . . 13
⊢ (𝑎 ↑𝑚
{𝑧}) ≈ 𝑎 |
| 77 | | hashen 13135 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ↑𝑚
{𝑧}) ∈ Fin ∧ 𝑎 ∈ Fin) →
((#‘(𝑎
↑𝑚 {𝑧})) = (#‘𝑎) ↔ (𝑎 ↑𝑚 {𝑧}) ≈ 𝑎)) |
| 78 | 67, 57, 77 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘(𝑎 ↑𝑚 {𝑧})) = (#‘𝑎) ↔ (𝑎 ↑𝑚 {𝑧}) ≈ 𝑎)) |
| 79 | 76, 78 | mpbiri 248 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘(𝑎 ↑𝑚 {𝑧})) = (#‘𝑎)) |
| 80 | 79 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘(𝑎 ↑𝑚 𝑦)) · (#‘(𝑎 ↑𝑚
{𝑧}))) = ((#‘(𝑎 ↑𝑚
𝑦)) · (#‘𝑎))) |
| 81 | 74, 80 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘((𝑎 ↑𝑚 𝑦) × (𝑎 ↑𝑚 {𝑧}))) = ((#‘(𝑎 ↑𝑚
𝑦)) · (#‘𝑎))) |
| 82 | 72, 81 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘(𝑎 ↑𝑚 (𝑦 ∪ {𝑧}))) = ((#‘(𝑎 ↑𝑚 𝑦)) · (#‘𝑎))) |
| 83 | | hashunsng 13181 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (#‘(𝑦 ∪ {𝑧})) = ((#‘𝑦) + 1))) |
| 84 | 75, 83 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (#‘(𝑦 ∪ {𝑧})) = ((#‘𝑦) + 1)) |
| 85 | 84 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘(𝑦 ∪ {𝑧})) = ((#‘𝑦) + 1)) |
| 86 | 85 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧}))) = ((#‘𝑎)↑((#‘𝑦) + 1))) |
| 87 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘𝑎) ∈ ℂ) |
| 88 | | hashcl 13147 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ Fin →
(#‘𝑦) ∈
ℕ0) |
| 89 | 88 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → (#‘𝑦) ∈
ℕ0) |
| 90 | 87, 89 | expp1d 13009 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘𝑎)↑((#‘𝑦) + 1)) = (((#‘𝑎)↑(#‘𝑦)) · (#‘𝑎))) |
| 91 | 86, 90 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧}))) = (((#‘𝑎)↑(#‘𝑦)) · (#‘𝑎))) |
| 92 | 82, 91 | eqeq12d 2637 |
. . . . . . . 8
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘(𝑎 ↑𝑚 (𝑦 ∪ {𝑧}))) = ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧}))) ↔ ((#‘(𝑎 ↑𝑚 𝑦)) · (#‘𝑎)) = (((#‘𝑎)↑(#‘𝑦)) · (#‘𝑎)))) |
| 93 | 48, 92 | syl5ibr 236 |
. . . . . . 7
⊢ ((𝑎 ∈ Fin ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((#‘(𝑎 ↑𝑚 𝑦)) = ((#‘𝑎)↑(#‘𝑦)) → (#‘(𝑎 ↑𝑚
(𝑦 ∪ {𝑧}))) = ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧}))))) |
| 94 | 93 | expcom 451 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝑎 ∈ Fin → ((#‘(𝑎 ↑𝑚
𝑦)) = ((#‘𝑎)↑(#‘𝑦)) → (#‘(𝑎 ↑𝑚
(𝑦 ∪ {𝑧}))) = ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧})))))) |
| 95 | 94 | a2d 29 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
𝑦)) = ((#‘𝑎)↑(#‘𝑦))) → (𝑎 ∈ Fin → (#‘(𝑎 ↑𝑚
(𝑦 ∪ {𝑧}))) = ((#‘𝑎)↑(#‘(𝑦 ∪ {𝑧})))))) |
| 96 | 12, 18, 24, 30, 47, 95 | findcard2s 8201 |
. . . 4
⊢ (𝐵 ∈ Fin → (𝑎 ∈ Fin →
(#‘(𝑎
↑𝑚 𝐵)) = ((#‘𝑎)↑(#‘𝐵)))) |
| 97 | 96 | com12 32 |
. . 3
⊢ (𝑎 ∈ Fin → (𝐵 ∈ Fin →
(#‘(𝑎
↑𝑚 𝐵)) = ((#‘𝑎)↑(#‘𝐵)))) |
| 98 | 6, 97 | vtoclga 3272 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ∈ Fin →
(#‘(𝐴
↑𝑚 𝐵)) = ((#‘𝐴)↑(#‘𝐵)))) |
| 99 | 98 | imp 445 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
(#‘(𝐴
↑𝑚 𝐵)) = ((#‘𝐴)↑(#‘𝐵))) |