Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1neglem1N Structured version   Visualization version   GIF version

Theorem hdmap1neglem1N 37117
Description: Lemma for hdmapneg 37138. TODO: Not used; delete. (Contributed by NM, 23-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmap1neglem1.h 𝐻 = (LHyp‘𝐾)
hdmap1neglem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1neglem1.v 𝑉 = (Base‘𝑈)
hdmap1neglem1.r 𝑅 = (invg𝑈)
hdmap1neglem1.o 0 = (0g𝑈)
hdmap1neglem1.n 𝑁 = (LSpan‘𝑈)
hdmap1neglem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1neglem1.d 𝐷 = (Base‘𝐶)
hdmap1neglem1.s 𝑆 = (invg𝐶)
hdmap1neglem1.l 𝐿 = (LSpan‘𝐶)
hdmap1neglem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1neglem1.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1neglem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1neglem1.f (𝜑𝐹𝐷)
hdmap1neglem1.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1neglem1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
hdmap1neglem1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1neglem1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1neglem1.e (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
Assertion
Ref Expression
hdmap1neglem1N (𝜑 → (𝐼‘⟨(𝑅𝑋), (𝑆𝐹), (𝑅𝑌)⟩) = (𝑆𝐺))

Proof of Theorem hdmap1neglem1N
StepHypRef Expression
1 hdmap1neglem1.e . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
2 hdmap1neglem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 hdmap1neglem1.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 hdmap1neglem1.v . . . . . 6 𝑉 = (Base‘𝑈)
5 eqid 2622 . . . . . 6 (-g𝑈) = (-g𝑈)
6 hdmap1neglem1.o . . . . . 6 0 = (0g𝑈)
7 hdmap1neglem1.n . . . . . 6 𝑁 = (LSpan‘𝑈)
8 hdmap1neglem1.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1neglem1.d . . . . . 6 𝐷 = (Base‘𝐶)
10 eqid 2622 . . . . . 6 (-g𝐶) = (-g𝐶)
11 hdmap1neglem1.l . . . . . 6 𝐿 = (LSpan‘𝐶)
12 hdmap1neglem1.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1neglem1.i . . . . . 6 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1neglem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1neglem1.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
16 hdmap1neglem1.f . . . . . 6 (𝜑𝐹𝐷)
17 hdmap1neglem1.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
18 hdmap1neglem1.mn . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
19 hdmap1neglem1.ne . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2017eldifad 3586 . . . . . . . 8 (𝜑𝑌𝑉)
212, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 19, 15, 20hdmap1cl 37094 . . . . . . 7 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
221, 21eqeltrrd 2702 . . . . . 6 (𝜑𝐺𝐷)
232, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 22, 19, 18hdmap1eq 37091 . . . . 5 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋(-g𝑈)𝑌)})) = (𝐿‘{(𝐹(-g𝐶)𝐺)}))))
241, 23mpbid 222 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋(-g𝑈)𝑌)})) = (𝐿‘{(𝐹(-g𝐶)𝐺)})))
2524simpld 475 . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))
262, 3, 14dvhlmod 36399 . . . . 5 (𝜑𝑈 ∈ LMod)
27 hdmap1neglem1.r . . . . . 6 𝑅 = (invg𝑈)
284, 27, 7lspsnneg 19006 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{(𝑅𝑌)}) = (𝑁‘{𝑌}))
2926, 20, 28syl2anc 693 . . . 4 (𝜑 → (𝑁‘{(𝑅𝑌)}) = (𝑁‘{𝑌}))
3029fveq2d 6195 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑅𝑌)})) = (𝑀‘(𝑁‘{𝑌})))
312, 8, 14lcdlmod 36881 . . . 4 (𝜑𝐶 ∈ LMod)
32 hdmap1neglem1.s . . . . 5 𝑆 = (invg𝐶)
339, 32, 11lspsnneg 19006 . . . 4 ((𝐶 ∈ LMod ∧ 𝐺𝐷) → (𝐿‘{(𝑆𝐺)}) = (𝐿‘{𝐺}))
3431, 22, 33syl2anc 693 . . 3 (𝜑 → (𝐿‘{(𝑆𝐺)}) = (𝐿‘{𝐺}))
3525, 30, 343eqtr4d 2666 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑅𝑌)})) = (𝐿‘{(𝑆𝐺)}))
3624simprd 479 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋(-g𝑈)𝑌)})) = (𝐿‘{(𝐹(-g𝐶)𝐺)}))
37 lmodabl 18910 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑈 ∈ Abel)
3826, 37syl 17 . . . . . . . 8 (𝜑𝑈 ∈ Abel)
3915eldifad 3586 . . . . . . . 8 (𝜑𝑋𝑉)
404, 5, 27, 38, 39, 20ablsub2inv 18216 . . . . . . 7 (𝜑 → ((𝑅𝑋)(-g𝑈)(𝑅𝑌)) = (𝑌(-g𝑈)𝑋))
4140sneqd 4189 . . . . . 6 (𝜑 → {((𝑅𝑋)(-g𝑈)(𝑅𝑌))} = {(𝑌(-g𝑈)𝑋)})
4241fveq2d 6195 . . . . 5 (𝜑 → (𝑁‘{((𝑅𝑋)(-g𝑈)(𝑅𝑌))}) = (𝑁‘{(𝑌(-g𝑈)𝑋)}))
434, 5, 7, 26, 20, 39lspsnsub 19007 . . . . 5 (𝜑 → (𝑁‘{(𝑌(-g𝑈)𝑋)}) = (𝑁‘{(𝑋(-g𝑈)𝑌)}))
4442, 43eqtrd 2656 . . . 4 (𝜑 → (𝑁‘{((𝑅𝑋)(-g𝑈)(𝑅𝑌))}) = (𝑁‘{(𝑋(-g𝑈)𝑌)}))
4544fveq2d 6195 . . 3 (𝜑 → (𝑀‘(𝑁‘{((𝑅𝑋)(-g𝑈)(𝑅𝑌))})) = (𝑀‘(𝑁‘{(𝑋(-g𝑈)𝑌)})))
46 lmodabl 18910 . . . . . . . 8 (𝐶 ∈ LMod → 𝐶 ∈ Abel)
4731, 46syl 17 . . . . . . 7 (𝜑𝐶 ∈ Abel)
489, 10, 32, 47, 16, 22ablsub2inv 18216 . . . . . 6 (𝜑 → ((𝑆𝐹)(-g𝐶)(𝑆𝐺)) = (𝐺(-g𝐶)𝐹))
4948sneqd 4189 . . . . 5 (𝜑 → {((𝑆𝐹)(-g𝐶)(𝑆𝐺))} = {(𝐺(-g𝐶)𝐹)})
5049fveq2d 6195 . . . 4 (𝜑 → (𝐿‘{((𝑆𝐹)(-g𝐶)(𝑆𝐺))}) = (𝐿‘{(𝐺(-g𝐶)𝐹)}))
519, 10, 11, 31, 22, 16lspsnsub 19007 . . . 4 (𝜑 → (𝐿‘{(𝐺(-g𝐶)𝐹)}) = (𝐿‘{(𝐹(-g𝐶)𝐺)}))
5250, 51eqtrd 2656 . . 3 (𝜑 → (𝐿‘{((𝑆𝐹)(-g𝐶)(𝑆𝐺))}) = (𝐿‘{(𝐹(-g𝐶)𝐺)}))
5336, 45, 523eqtr4d 2666 . 2 (𝜑 → (𝑀‘(𝑁‘{((𝑅𝑋)(-g𝑈)(𝑅𝑌))})) = (𝐿‘{((𝑆𝐹)(-g𝐶)(𝑆𝐺))}))
54 lmodgrp 18870 . . . . 5 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
5526, 54syl 17 . . . 4 (𝜑𝑈 ∈ Grp)
564, 6, 27grpinvnzcl 17487 . . . 4 ((𝑈 ∈ Grp ∧ 𝑋 ∈ (𝑉 ∖ { 0 })) → (𝑅𝑋) ∈ (𝑉 ∖ { 0 }))
5755, 15, 56syl2anc 693 . . 3 (𝜑 → (𝑅𝑋) ∈ (𝑉 ∖ { 0 }))
589, 32lmodvnegcl 18904 . . . 4 ((𝐶 ∈ LMod ∧ 𝐹𝐷) → (𝑆𝐹) ∈ 𝐷)
5931, 16, 58syl2anc 693 . . 3 (𝜑 → (𝑆𝐹) ∈ 𝐷)
604, 6, 27grpinvnzcl 17487 . . . 4 ((𝑈 ∈ Grp ∧ 𝑌 ∈ (𝑉 ∖ { 0 })) → (𝑅𝑌) ∈ (𝑉 ∖ { 0 }))
6155, 17, 60syl2anc 693 . . 3 (𝜑 → (𝑅𝑌) ∈ (𝑉 ∖ { 0 }))
629, 32lmodvnegcl 18904 . . . 4 ((𝐶 ∈ LMod ∧ 𝐺𝐷) → (𝑆𝐺) ∈ 𝐷)
6331, 22, 62syl2anc 693 . . 3 (𝜑 → (𝑆𝐺) ∈ 𝐷)
644, 27, 7lspsnneg 19006 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{(𝑅𝑋)}) = (𝑁‘{𝑋}))
6526, 39, 64syl2anc 693 . . . 4 (𝜑 → (𝑁‘{(𝑅𝑋)}) = (𝑁‘{𝑋}))
6619, 65, 293netr4d 2871 . . 3 (𝜑 → (𝑁‘{(𝑅𝑋)}) ≠ (𝑁‘{(𝑅𝑌)}))
6765fveq2d 6195 . . . 4 (𝜑 → (𝑀‘(𝑁‘{(𝑅𝑋)})) = (𝑀‘(𝑁‘{𝑋})))
689, 32, 11lspsnneg 19006 . . . . 5 ((𝐶 ∈ LMod ∧ 𝐹𝐷) → (𝐿‘{(𝑆𝐹)}) = (𝐿‘{𝐹}))
6931, 16, 68syl2anc 693 . . . 4 (𝜑 → (𝐿‘{(𝑆𝐹)}) = (𝐿‘{𝐹}))
7018, 67, 693eqtr4d 2666 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑅𝑋)})) = (𝐿‘{(𝑆𝐹)}))
712, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 57, 59, 61, 63, 66, 70hdmap1eq 37091 . 2 (𝜑 → ((𝐼‘⟨(𝑅𝑋), (𝑆𝐹), (𝑅𝑌)⟩) = (𝑆𝐺) ↔ ((𝑀‘(𝑁‘{(𝑅𝑌)})) = (𝐿‘{(𝑆𝐺)}) ∧ (𝑀‘(𝑁‘{((𝑅𝑋)(-g𝑈)(𝑅𝑌))})) = (𝐿‘{((𝑆𝐹)(-g𝐶)(𝑆𝐺))}))))
7235, 53, 71mpbir2and 957 1 (𝜑 → (𝐼‘⟨(𝑅𝑋), (𝑆𝐹), (𝑅𝑌)⟩) = (𝑆𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {csn 4177  cotp 4185  cfv 5888  (class class class)co 6650  Basecbs 15857  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  -gcsg 17424  Abelcabl 18194  LModclmod 18863  LSpanclspn 18971  HLchlt 34637  LHypclh 35270  DVecHcdvh 36367  LCDualclcd 36875  mapdcmpd 36913  HDMap1chdma1 37081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-undef 7399  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-oppg 17776  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lshyp 34264  df-lcv 34306  df-lfl 34345  df-lkr 34373  df-ldual 34411  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tgrp 36031  df-tendo 36043  df-edring 36045  df-dveca 36291  df-disoa 36318  df-dvech 36368  df-dib 36428  df-dic 36462  df-dih 36518  df-doch 36637  df-djh 36684  df-lcdual 36876  df-mapd 36914  df-hdmap1 37083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator