![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhshsslem2 | Structured version Visualization version GIF version |
Description: Lemma for hhsssh 28126. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssp3.3 | ⊢ 𝑊 ∈ (SubSp‘𝑈) |
hhssp3.4 | ⊢ 𝐻 ⊆ ℋ |
Ref | Expression |
---|---|
hhshsslem2 | ⊢ 𝐻 ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssp3.4 | . . 3 ⊢ 𝐻 ⊆ ℋ | |
2 | hhsst.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 28022 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
4 | hhssp3.3 | . . . . 5 ⊢ 𝑊 ∈ (SubSp‘𝑈) | |
5 | 2 | hh0v 28025 | . . . . . 6 ⊢ 0ℎ = (0vec‘𝑈) |
6 | eqid 2622 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
7 | eqid 2622 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
8 | 5, 6, 7 | sspz 27590 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec‘𝑊) = 0ℎ) |
9 | 3, 4, 8 | mp2an 708 | . . . 4 ⊢ (0vec‘𝑊) = 0ℎ |
10 | 7 | sspnv 27581 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec) |
11 | 3, 4, 10 | mp2an 708 | . . . . . 6 ⊢ 𝑊 ∈ NrmCVec |
12 | eqid 2622 | . . . . . . 7 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
13 | 12, 6 | nvzcl 27489 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ (BaseSet‘𝑊)) |
14 | 11, 13 | ax-mp 5 | . . . . 5 ⊢ (0vec‘𝑊) ∈ (BaseSet‘𝑊) |
15 | hhsst.2 | . . . . . 6 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
16 | 2, 15, 4, 1 | hhshsslem1 28124 | . . . . 5 ⊢ 𝐻 = (BaseSet‘𝑊) |
17 | 14, 16 | eleqtrri 2700 | . . . 4 ⊢ (0vec‘𝑊) ∈ 𝐻 |
18 | 9, 17 | eqeltrri 2698 | . . 3 ⊢ 0ℎ ∈ 𝐻 |
19 | 1, 18 | pm3.2i 471 | . 2 ⊢ (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) |
20 | 2 | hhva 28023 | . . . . . . 7 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
21 | eqid 2622 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
22 | 16, 20, 21, 7 | sspgval 27584 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
23 | 3, 4, 22 | mpanl12 718 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
24 | 16, 21 | nvgcl 27475 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
25 | 11, 24 | mp3an1 1411 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
26 | 23, 25 | eqeltrrd 2702 | . . . 4 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) ∈ 𝐻) |
27 | 26 | rgen2a 2977 | . . 3 ⊢ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 |
28 | 2 | hhsm 28026 | . . . . . . 7 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
29 | eqid 2622 | . . . . . . 7 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
30 | 16, 28, 29, 7 | sspsval 27586 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻)) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
31 | 3, 4, 30 | mpanl12 718 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
32 | 16, 29 | nvscl 27481 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
33 | 11, 32 | mp3an1 1411 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
34 | 31, 33 | eqeltrrd 2702 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
35 | 34 | rgen2 2975 | . . 3 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 |
36 | 27, 35 | pm3.2i 471 | . 2 ⊢ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
37 | issh2 28066 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
38 | 19, 36, 37 | mpbir2an 955 | 1 ⊢ 𝐻 ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 〈cop 4183 × cxp 5112 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 NrmCVeccnv 27439 +𝑣 cpv 27440 BaseSetcba 27441 ·𝑠OLD cns 27442 0veccn0v 27443 SubSpcss 27576 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 normℎcno 27780 0ℎc0v 27781 Sℋ csh 27785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvmulass 27864 ax-hvdistr1 27865 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-vs 27454 df-nmcv 27455 df-ssp 27577 df-hnorm 27825 df-hvsub 27828 df-sh 28064 |
This theorem is referenced by: hhsssh 28126 |
Copyright terms: Public domain | W3C validator |