Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartipre Structured version   Visualization version   GIF version

Theorem iccpartipre 41357
Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartipre.i (𝜑𝐼 ∈ (1..^𝑀))
Assertion
Ref Expression
iccpartipre (𝜑 → (𝑃𝐼) ∈ ℝ)

Proof of Theorem iccpartipre
StepHypRef Expression
1 iccpartgtprec.m . . 3 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . 3 (𝜑𝑃 ∈ (RePart‘𝑀))
3 nnz 11399 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
4 peano2zm 11420 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
5 id 22 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
6 zre 11381 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
76lem1d 10957 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀)
84, 5, 73jca 1242 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
93, 8syl 17 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
10 eluz2 11693 . . . . . . 7 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
119, 10sylibr 224 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
121, 11syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ‘(𝑀 − 1)))
13 fzss2 12381 . . . . 5 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀))
1412, 13syl 17 . . . 4 (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀))
15 fzossfz 12488 . . . . . 6 (1..^𝑀) ⊆ (1...𝑀)
16 iccpartipre.i . . . . . 6 (𝜑𝐼 ∈ (1..^𝑀))
1715, 16sseldi 3601 . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
18 elfzoelz 12470 . . . . . . 7 (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ)
1916, 18syl 17 . . . . . 6 (𝜑𝐼 ∈ ℤ)
201nnzd 11481 . . . . . 6 (𝜑𝑀 ∈ ℤ)
21 elfzm1b 12418 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2219, 20, 21syl2anc 693 . . . . 5 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2317, 22mpbid 222 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1)))
2414, 23sseldd 3604 . . 3 (𝜑 → (𝐼 − 1) ∈ (0...𝑀))
251, 2, 24iccpartxr 41355 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*)
26 1eluzge0 11732 . . . . . 6 1 ∈ (ℤ‘0)
27 fzoss1 12495 . . . . . 6 (1 ∈ (ℤ‘0) → (1..^𝑀) ⊆ (0..^𝑀))
2826, 27mp1i 13 . . . . 5 (𝜑 → (1..^𝑀) ⊆ (0..^𝑀))
29 fzossfz 12488 . . . . 5 (0..^𝑀) ⊆ (0...𝑀)
3028, 29syl6ss 3615 . . . 4 (𝜑 → (1..^𝑀) ⊆ (0...𝑀))
3130, 16sseldd 3604 . . 3 (𝜑𝐼 ∈ (0...𝑀))
321, 2, 31iccpartxr 41355 . 2 (𝜑 → (𝑃𝐼) ∈ ℝ*)
3328, 16sseldd 3604 . . . 4 (𝜑𝐼 ∈ (0..^𝑀))
34 fzofzp1 12565 . . . 4 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
3533, 34syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
361, 2, 35iccpartxr 41355 . 2 (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
371, 2, 17iccpartgtprec 41356 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
38 iccpartimp 41353 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
391, 2, 33, 38syl3anc 1326 . . 3 (𝜑 → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
4039simprd 479 . 2 (𝜑 → (𝑃𝐼) < (𝑃‘(𝐼 + 1)))
41 xrre2 12001 . 2 ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃𝐼) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃𝐼) ∈ ℝ)
4225, 32, 36, 37, 40, 41syl32anc 1334 1 (𝜑 → (𝑃𝐼) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  RePartciccp 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-iccp 41350
This theorem is referenced by:  iccpartiltu  41358  iccpartigtl  41359  iccpartgt  41363  bgoldbtbndlem3  41695
  Copyright terms: Public domain W3C validator