MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasring Structured version   Visualization version   GIF version

Theorem imasring 18619
Description: The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
imasring.u (𝜑𝑈 = (𝐹s 𝑅))
imasring.v (𝜑𝑉 = (Base‘𝑅))
imasring.p + = (+g𝑅)
imasring.t · = (.r𝑅)
imasring.o 1 = (1r𝑅)
imasring.f (𝜑𝐹:𝑉onto𝐵)
imasring.e1 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasring.e2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
imasring (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
Distinct variable groups:   𝑞,𝑝, +   𝑎,𝑏,𝑝,𝑞,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞   1 ,𝑝,𝑞   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   · ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   1 (𝑎,𝑏)

Proof of Theorem imasring
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasring.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasring.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasring.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imasring.r . . . 4 (𝜑𝑅 ∈ Ring)
51, 2, 3, 4imasbas 16172 . . 3 (𝜑𝐵 = (Base‘𝑈))
6 eqidd 2623 . . 3 (𝜑 → (+g𝑈) = (+g𝑈))
7 eqidd 2623 . . 3 (𝜑 → (.r𝑈) = (.r𝑈))
8 imasring.p . . . . . 6 + = (+g𝑅)
98a1i 11 . . . . 5 (𝜑+ = (+g𝑅))
10 imasring.e1 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
11 ringgrp 18552 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
124, 11syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
13 eqid 2622 . . . . 5 (0g𝑅) = (0g𝑅)
141, 2, 9, 3, 10, 12, 13imasgrp 17531 . . . 4 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1514simpld 475 . . 3 (𝜑𝑈 ∈ Grp)
16 imasring.e2 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
17 imasring.t . . . . 5 · = (.r𝑅)
18 eqid 2622 . . . . 5 (.r𝑈) = (.r𝑈)
194adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑅 ∈ Ring)
20 simprl 794 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
212adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2703 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑢 ∈ (Base‘𝑅))
23 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
2423, 21eleqtrd 2703 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑣 ∈ (Base‘𝑅))
25 eqid 2622 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2625, 17ringcl 18561 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 · 𝑣) ∈ (Base‘𝑅))
2719, 22, 24, 26syl3anc 1326 . . . . . . 7 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 · 𝑣) ∈ (Base‘𝑅))
2827, 21eleqtrrd 2704 . . . . . 6 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 · 𝑣) ∈ 𝑉)
2928caovclg 6826 . . . . 5 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
303, 16, 1, 2, 4, 17, 18, 29imasmulf 16196 . . . 4 (𝜑 → (.r𝑈):(𝐵 × 𝐵)⟶𝐵)
31 fovrn 6804 . . . 4 (((.r𝑈):(𝐵 × 𝐵)⟶𝐵𝑢𝐵𝑣𝐵) → (𝑢(.r𝑈)𝑣) ∈ 𝐵)
3230, 31syl3an1 1359 . . 3 ((𝜑𝑢𝐵𝑣𝐵) → (𝑢(.r𝑈)𝑣) ∈ 𝐵)
33 forn 6118 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
343, 33syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝐵)
3534eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑢 ∈ ran 𝐹𝑢𝐵))
3634eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑣 ∈ ran 𝐹𝑣𝐵))
3734eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑤 ∈ ran 𝐹𝑤𝐵))
3835, 36, 373anbi123d 1399 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (𝑢𝐵𝑣𝐵𝑤𝐵)))
39 fofn 6117 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
403, 39syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
41 fvelrnb 6243 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
42 fvelrnb 6243 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦𝑉 (𝐹𝑦) = 𝑣))
43 fvelrnb 6243 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
4441, 42, 433anbi123d 1399 . . . . . . . 8 (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
4540, 44syl 17 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
4638, 45bitr3d 270 . . . . . 6 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
47 3reeanv 3108 . . . . . 6 (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
4846, 47syl6bbr 278 . . . . 5 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤)))
494adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
50 simp2 1062 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
5123ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
5250, 51eleqtrd 2703 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
53523adant3r3 1276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
54 simp3 1063 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
5554, 51eleqtrd 2703 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
56553adant3r3 1276 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
57 simpr3 1069 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
582adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
5957, 58eleqtrd 2703 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
6025, 17ringass 18564 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6149, 53, 56, 59, 60syl13anc 1328 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6261fveq2d 6195 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 · 𝑦) · 𝑧)) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
63 simpl 473 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝜑)
6428caovclg 6826 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
65643adantr3 1222 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
663, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧)))
6763, 65, 57, 66syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧)))
68 simpr1 1067 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥𝑉)
6928caovclg 6826 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 · 𝑧) ∈ 𝑉)
70693adantr1 1220 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 · 𝑧) ∈ 𝑉)
713, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
7263, 68, 70, 71syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
7362, 67, 723eqtr4d 2666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))))
743, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
75743adant3r3 1276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
7675oveq1d 6665 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)))
773, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . . . . . 13 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 · 𝑧)))
78773adant3r1 1274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 · 𝑧)))
7978oveq2d 6666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))))
8073, 76, 793eqtr4d 2666 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))))
81 simp1 1061 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑥) = 𝑢)
82 simp2 1062 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑦) = 𝑣)
8381, 82oveq12d 6668 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝑢(.r𝑈)𝑣))
84 simp3 1063 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
8583, 84oveq12d 6668 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤))
8682, 84oveq12d 6668 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝑣(.r𝑈)𝑤))
8781, 86oveq12d 6668 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))
8885, 87eqeq12d 2637 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) ↔ ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
8980, 88syl5ibcom 235 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
90893exp2 1285 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))))))
9190imp32 449 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))))
9291rexlimdv 3030 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9392rexlimdvva 3038 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9448, 93sylbid 230 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9594imp 445 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))
9625, 8, 17ringdi 18566 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
9749, 53, 56, 59, 96syl13anc 1328 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
9897fveq2d 6195 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘(𝑥 · (𝑦 + 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
9925, 8ringacl 18578 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 + 𝑣) ∈ (Base‘𝑅))
10019, 22, 24, 99syl3anc 1326 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 + 𝑣) ∈ (Base‘𝑅))
101100, 21eleqtrrd 2704 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 + 𝑣) ∈ 𝑉)
102101caovclg 6826 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
1031023adantr1 1220 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
1043, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧))))
10563, 68, 103, 104syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧))))
10628caovclg 6826 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑧𝑉)) → (𝑥 · 𝑧) ∈ 𝑉)
1071063adantr2 1221 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · 𝑧) ∈ 𝑉)
108 eqid 2622 . . . . . . . . . . . . . 14 (+g𝑈) = (+g𝑈)
1093, 10, 1, 2, 4, 8, 108imasaddval 16192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ (𝑥 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
11063, 65, 107, 109syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
11198, 105, 1103eqtr4d 2666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))))
1123, 10, 1, 2, 4, 8, 108imasaddval 16192 . . . . . . . . . . . . 13 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
1131123adant3r1 1274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
114113oveq2d 6666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))))
1153, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑧𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑥 · 𝑧)))
1161153adant3r2 1275 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑥 · 𝑧)))
11775, 116oveq12d 6668 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))))
118111, 114, 1173eqtr4d 2666 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))))
11982, 84oveq12d 6668 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝑣(+g𝑈)𝑤))
12081, 119oveq12d 6668 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)))
12181, 84oveq12d 6668 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝑢(.r𝑈)𝑤))
12283, 121oveq12d 6668 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))
123120, 122eqeq12d 2637 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) ↔ (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
124118, 123syl5ibcom 235 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
1251243exp2 1285 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))))))
126125imp32 449 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))))
127126rexlimdv 3030 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
128127rexlimdvva 3038 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
12948, 128sylbid 230 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
130129imp 445 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))
13125, 8, 17ringdir 18567 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
13249, 53, 56, 59, 131syl13anc 1328 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
133132fveq2d 6195 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) · 𝑧)) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
134101caovclg 6826 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
1351343adantr3 1222 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
1363, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧)))
13763, 135, 57, 136syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧)))
1383, 10, 1, 2, 4, 8, 108imasaddval 16192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑧) ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
13963, 107, 70, 138syl3anc 1326 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
140133, 137, 1393eqtr4d 2666 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))))
1413, 10, 1, 2, 4, 8, 108imasaddval 16192 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
1421413adant3r3 1276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
143142oveq1d 6665 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)))
144116, 78oveq12d 6668 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))))
145140, 143, 1443eqtr4d 2666 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))))
14681, 82oveq12d 6668 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝑢(+g𝑈)𝑣))
147146, 84oveq12d 6668 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤))
148121, 86oveq12d 6668 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))
149147, 148eqeq12d 2637 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) ↔ ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
150145, 149syl5ibcom 235 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
1511503exp2 1285 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))))))
152151imp32 449 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))))
153152rexlimdv 3030 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
154153rexlimdvva 3038 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
15548, 154sylbid 230 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
156155imp 445 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))
157 fof 6115 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
1583, 157syl 17 . . . 4 (𝜑𝐹:𝑉𝐵)
159 imasring.o . . . . . . 7 1 = (1r𝑅)
16025, 159ringidcl 18568 . . . . . 6 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
1614, 160syl 17 . . . . 5 (𝜑1 ∈ (Base‘𝑅))
162161, 2eleqtrrd 2704 . . . 4 (𝜑1𝑉)
163158, 162ffvelrnd 6360 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
16440, 41syl 17 . . . . . 6 (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
16535, 164bitr3d 270 . . . . 5 (𝜑 → (𝑢𝐵 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
166 simpl 473 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝜑)
167162adantr 481 . . . . . . . . 9 ((𝜑𝑥𝑉) → 1𝑉)
168 simpr 477 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑥𝑉)
1693, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . 9 ((𝜑1𝑉𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹‘( 1 · 𝑥)))
170166, 167, 168, 169syl3anc 1326 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹‘( 1 · 𝑥)))
1714adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑅 ∈ Ring)
1722eleq2d 2687 . . . . . . . . . . 11 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
173172biimpa 501 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
17425, 17, 159ringlidm 18571 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ( 1 · 𝑥) = 𝑥)
175171, 173, 174syl2anc 693 . . . . . . . . 9 ((𝜑𝑥𝑉) → ( 1 · 𝑥) = 𝑥)
176175fveq2d 6195 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘( 1 · 𝑥)) = (𝐹𝑥))
177170, 176eqtrd 2656 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹𝑥))
178 oveq2 6658 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = ((𝐹1 )(.r𝑈)𝑢))
179 id 22 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → (𝐹𝑥) = 𝑢)
180178, 179eqeq12d 2637 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹𝑥) ↔ ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
181177, 180syl5ibcom 235 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
182181rexlimdva 3031 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
183165, 182sylbid 230 . . . 4 (𝜑 → (𝑢𝐵 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
184183imp 445 . . 3 ((𝜑𝑢𝐵) → ((𝐹1 )(.r𝑈)𝑢) = 𝑢)
1853, 16, 1, 2, 4, 17, 18imasmulval 16195 . . . . . . . . 9 ((𝜑𝑥𝑉1𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹‘(𝑥 · 1 )))
186167, 185mpd3an3 1425 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹‘(𝑥 · 1 )))
18725, 17, 159ringridm 18572 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 · 1 ) = 𝑥)
188171, 173, 187syl2anc 693 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝑥 · 1 ) = 𝑥)
189188fveq2d 6195 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 · 1 )) = (𝐹𝑥))
190186, 189eqtrd 2656 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹𝑥))
191 oveq1 6657 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝑢(.r𝑈)(𝐹1 )))
192191, 179eqeq12d 2637 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹𝑥) ↔ (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
193190, 192syl5ibcom 235 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
194193rexlimdva 3031 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
195165, 194sylbid 230 . . . 4 (𝜑 → (𝑢𝐵 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
196195imp 445 . . 3 ((𝜑𝑢𝐵) → (𝑢(.r𝑈)(𝐹1 )) = 𝑢)
1975, 6, 7, 15, 32, 95, 130, 156, 163, 184, 196isringd 18585 . 2 (𝜑𝑈 ∈ Ring)
198163, 5eleqtrd 2703 . . . 4 (𝜑 → (𝐹1 ) ∈ (Base‘𝑈))
1995eleq2d 2687 . . . . . 6 (𝜑 → (𝑢𝐵𝑢 ∈ (Base‘𝑈)))
200183, 195jcad 555 . . . . . 6 (𝜑 → (𝑢𝐵 → (((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)))
201199, 200sylbird 250 . . . . 5 (𝜑 → (𝑢 ∈ (Base‘𝑈) → (((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)))
202201ralrimiv 2965 . . . 4 (𝜑 → ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
203 eqid 2622 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
204 eqid 2622 . . . . . 6 (1r𝑈) = (1r𝑈)
205203, 18, 204isringid 18573 . . . . 5 (𝑈 ∈ Ring → (((𝐹1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)) ↔ (1r𝑈) = (𝐹1 )))
206197, 205syl 17 . . . 4 (𝜑 → (((𝐹1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)) ↔ (1r𝑈) = (𝐹1 )))
207198, 202, 206mpbi2and 956 . . 3 (𝜑 → (1r𝑈) = (𝐹1 ))
208207eqcomd 2628 . 2 (𝜑 → (𝐹1 ) = (1r𝑈))
209197, 208jca 554 1 (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913   × cxp 5112  ran crn 5115   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  s cimas 16164  Grpcgrp 17422  1rcur 18501  Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-imas 16168  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549
This theorem is referenced by:  qusring2  18620
  Copyright terms: Public domain W3C validator