![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imastopn | Structured version Visualization version GIF version |
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
imastps.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imastps.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imastps.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imastopn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
imastopn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
imastopn.o | ⊢ 𝑂 = (TopOpen‘𝑈) |
Ref | Expression |
---|---|
imastopn | ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imastps.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imastps.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imastps.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imastopn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
5 | imastopn.j | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑅) | |
6 | eqid 2622 | . . . . . . 7 ⊢ (TopSet‘𝑈) = (TopSet‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imastset 16182 | . . . . . 6 ⊢ (𝜑 → (TopSet‘𝑈) = (𝐽 qTop 𝐹)) |
8 | fvex 6201 | . . . . . . . 8 ⊢ (TopOpen‘𝑅) ∈ V | |
9 | 5, 8 | eqeltri 2697 | . . . . . . 7 ⊢ 𝐽 ∈ V |
10 | fofn 6117 | . . . . . . . . 9 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | |
11 | 3, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
12 | fvex 6201 | . . . . . . . . 9 ⊢ (Base‘𝑅) ∈ V | |
13 | 2, 12 | syl6eqel 2709 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ V) |
14 | fnex 6481 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝑉 ∧ 𝑉 ∈ V) → 𝐹 ∈ V) | |
15 | 11, 13, 14 | syl2anc 693 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ V) |
16 | eqid 2622 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
17 | 16 | qtopval 21498 | . . . . . . 7 ⊢ ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
18 | 9, 15, 17 | sylancr 695 | . . . . . 6 ⊢ (𝜑 → (𝐽 qTop 𝐹) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
19 | 7, 18 | eqtrd 2656 | . . . . 5 ⊢ (𝜑 → (TopSet‘𝑈) = {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽}) |
20 | ssrab2 3687 | . . . . . 6 ⊢ {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (𝐹 “ ∪ 𝐽) | |
21 | imassrn 5477 | . . . . . . . 8 ⊢ (𝐹 “ ∪ 𝐽) ⊆ ran 𝐹 | |
22 | forn 6118 | . . . . . . . . . 10 ⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | |
23 | 3, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ran 𝐹 = 𝐵) |
24 | 1, 2, 3, 4 | imasbas 16172 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
25 | 23, 24 | eqtrd 2656 | . . . . . . . 8 ⊢ (𝜑 → ran 𝐹 = (Base‘𝑈)) |
26 | 21, 25 | syl5sseq 3653 | . . . . . . 7 ⊢ (𝜑 → (𝐹 “ ∪ 𝐽) ⊆ (Base‘𝑈)) |
27 | sspwb 4917 | . . . . . . 7 ⊢ ((𝐹 “ ∪ 𝐽) ⊆ (Base‘𝑈) ↔ 𝒫 (𝐹 “ ∪ 𝐽) ⊆ 𝒫 (Base‘𝑈)) | |
28 | 26, 27 | sylib 208 | . . . . . 6 ⊢ (𝜑 → 𝒫 (𝐹 “ ∪ 𝐽) ⊆ 𝒫 (Base‘𝑈)) |
29 | 20, 28 | syl5ss 3614 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (𝐹 “ ∪ 𝐽) ∣ ((◡𝐹 “ 𝑥) ∩ ∪ 𝐽) ∈ 𝐽} ⊆ 𝒫 (Base‘𝑈)) |
30 | 19, 29 | eqsstrd 3639 | . . . 4 ⊢ (𝜑 → (TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈)) |
31 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
32 | 31, 6 | topnid 16096 | . . . 4 ⊢ ((TopSet‘𝑈) ⊆ 𝒫 (Base‘𝑈) → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
33 | 30, 32 | syl 17 | . . 3 ⊢ (𝜑 → (TopSet‘𝑈) = (TopOpen‘𝑈)) |
34 | imastopn.o | . . 3 ⊢ 𝑂 = (TopOpen‘𝑈) | |
35 | 33, 34 | syl6eqr 2674 | . 2 ⊢ (𝜑 → (TopSet‘𝑈) = 𝑂) |
36 | 35, 7 | eqtr3d 2658 | 1 ⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 ◡ccnv 5113 ran crn 5115 “ cima 5117 Fn wfn 5883 –onto→wfo 5886 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 TopSetcts 15947 TopOpenctopn 16082 qTop cqtop 16163 “s cimas 16164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-rest 16083 df-topn 16084 df-qtop 16167 df-imas 16168 |
This theorem is referenced by: imastps 21524 xpstopnlem2 21614 qustgpopn 21923 qustgplem 21924 qustgphaus 21926 imasf1oxms 22294 |
Copyright terms: Public domain | W3C validator |