| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑝 = 1 →
(ℤ≥‘𝑝) =
(ℤ≥‘1)) |
| 2 | 1 | eleq2d 2687 |
. . . . . 6
⊢ (𝑝 = 1 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈
(ℤ≥‘1))) |
| 3 | 2 | rexbidv 3052 |
. . . . 5
⊢ (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1))) |
| 4 | 3 | imbi2d 330 |
. . . 4
⊢ (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)))) |
| 5 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → (ℤ≥‘𝑝) =
(ℤ≥‘𝑞)) |
| 6 | 5 | eleq2d 2687 |
. . . . . 6
⊢ (𝑝 = 𝑞 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞))) |
| 7 | 6 | rexbidv 3052 |
. . . . 5
⊢ (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞))) |
| 8 | 7 | imbi2d 330 |
. . . 4
⊢ (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞)))) |
| 9 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑝 = (𝑞 + 1) →
(ℤ≥‘𝑝) = (ℤ≥‘(𝑞 + 1))) |
| 10 | 9 | eleq2d 2687 |
. . . . . 6
⊢ (𝑝 = (𝑞 + 1) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
| 11 | 10 | rexbidv 3052 |
. . . . 5
⊢ (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
| 12 | 11 | imbi2d 330 |
. . . 4
⊢ (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) |
| 13 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑝 = 𝐴 → (ℤ≥‘𝑝) =
(ℤ≥‘𝐴)) |
| 14 | 13 | eleq2d 2687 |
. . . . . 6
⊢ (𝑝 = 𝐴 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
| 15 | 14 | rexbidv 3052 |
. . . . 5
⊢ (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
| 16 | 15 | imbi2d 330 |
. . . 4
⊢ (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)))) |
| 17 | | 1nn 11031 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 18 | 17 | ne0ii 3923 |
. . . . . 6
⊢ ℕ
≠ ∅ |
| 19 | | ffvelrn 6357 |
. . . . . . . 8
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℕ) |
| 20 | | elnnuz 11724 |
. . . . . . . 8
⊢ ((𝐹‘𝑛) ∈ ℕ ↔ (𝐹‘𝑛) ∈
(ℤ≥‘1)) |
| 21 | 19, 20 | sylib 208 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈
(ℤ≥‘1)) |
| 22 | 21 | ralrimiva 2966 |
. . . . . 6
⊢ (𝐹:ℕ⟶ℕ →
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ∈
(ℤ≥‘1)) |
| 23 | | r19.2z 4060 |
. . . . . 6
⊢ ((ℕ
≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘1))
→ ∃𝑛 ∈
ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)) |
| 24 | 18, 22, 23 | sylancr 695 |
. . . . 5
⊢ (𝐹:ℕ⟶ℕ →
∃𝑛 ∈ ℕ
(𝐹‘𝑛) ∈
(ℤ≥‘1)) |
| 25 | 24 | adantr 481 |
. . . 4
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)) |
| 26 | | peano2nn 11032 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
| 27 | 26 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
| 28 | | nnre 11027 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → 𝑞 ∈
ℝ) |
| 29 | 28 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ) |
| 30 | 19 | nnred 11035 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℝ) |
| 31 | 30 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
| 32 | 31 | adantll 750 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
| 33 | | 1red 10055 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈
ℝ) |
| 34 | 29, 32, 33 | leadd1d 10621 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹‘𝑛) ↔ (𝑞 + 1) ≤ ((𝐹‘𝑛) + 1))) |
| 35 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
| 36 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1)) |
| 37 | 36 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1))) |
| 38 | 35, 37 | breq12d 4666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
| 39 | 38 | rspcv 3305 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
| 40 | 39 | imdistani 726 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
| 41 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℕ) |
| 42 | 26, 41 | sylan2 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℕ) |
| 43 | | nnltp1le 11433 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹‘𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 44 | 19, 42, 43 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 45 | 44 | biimpa 501 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
(𝐹‘𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
| 46 | 45 | anasss 679 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 ∈ ℕ ∧
(𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
| 47 | 40, 46 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 ∈ ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
| 48 | 47 | anass1rs 849 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
| 49 | 48 | adantll 750 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
| 50 | | peano2re 10209 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ ℝ → (𝑞 + 1) ∈
ℝ) |
| 51 | 28, 50 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℕ → (𝑞 + 1) ∈
ℝ) |
| 52 | 51 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(𝑞 + 1) ∈
ℝ) |
| 53 | | peano2nn 11032 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) ∈ ℕ → ((𝐹‘𝑛) + 1) ∈ ℕ) |
| 54 | 19, 53 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℕ) |
| 55 | 54 | nnred 11035 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℝ) |
| 56 | 55 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℝ) |
| 57 | 41 | nnred 11035 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℝ) |
| 58 | 26, 57 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℝ) |
| 59 | 58 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℝ) |
| 60 | | letr 10131 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 + 1) ∈ ℝ ∧
((𝐹‘𝑛) + 1) ∈ ℝ ∧
(𝐹‘(𝑛 + 1)) ∈ ℝ) →
(((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 61 | 52, 56, 59, 60 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 62 | 61 | adantlrr 757 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 63 | 49, 62 | mpan2d 710 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 64 | 34, 63 | sylbid 230 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹‘𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 65 | | nnz 11399 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → 𝑞 ∈
ℤ) |
| 66 | 19 | nnzd 11481 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℤ) |
| 67 | | eluz 11701 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℤ ∧ (𝐹‘𝑛) ∈ ℤ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
| 68 | 65, 66, 67 | syl2an 494 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ)) →
((𝐹‘𝑛) ∈
(ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
| 69 | 68 | adantrlr 759 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
| 70 | 69 | anassrs 680 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
| 71 | 65 | peano2zd 11485 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → (𝑞 + 1) ∈
ℤ) |
| 72 | 41 | nnzd 11481 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℤ) |
| 73 | 26, 72 | sylan2 491 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℤ) |
| 74 | | eluz 11701 |
. . . . . . . . . . . . 13
⊢ (((𝑞 + 1) ∈ ℤ ∧
(𝐹‘(𝑛 + 1)) ∈ ℤ) →
((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 75 | 71, 73, 74 | syl2an 494 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ)) →
((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 76 | 75 | adantrlr 759 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 77 | 76 | anassrs 680 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
| 78 | 64, 70, 77 | 3imtr4d 283 |
. . . . . . . . 9
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → (𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)))) |
| 79 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 80 | 79 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)))) |
| 81 | 80 | rspcev 3309 |
. . . . . . . . 9
⊢ (((𝑛 + 1) ∈ ℕ ∧
(𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1))) |
| 82 | 27, 78, 81 | syl6an 568 |
. . . . . . . 8
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)))) |
| 83 | 82 | rexlimdva 3031 |
. . . . . . 7
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)))) |
| 84 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
| 85 | 84 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
| 86 | 85 | cbvrexv 3172 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ (𝐹‘𝑘) ∈
(ℤ≥‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))) |
| 87 | 83, 86 | syl6ib 241 |
. . . . . 6
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
| 88 | 87 | ex 450 |
. . . . 5
⊢ (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) |
| 89 | 88 | a2d 29 |
. . . 4
⊢ (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) |
| 90 | 4, 8, 12, 16, 25, 89 | nnind 11038 |
. . 3
⊢ (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
| 91 | 90 | com12 32 |
. 2
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
| 92 | 91 | 3impia 1261 |
1
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)) |