Proof of Theorem isercolllem3
| Step | Hyp | Ref
| Expression |
| 1 | | addid2 10219 |
. . 3
⊢ (𝑛 ∈ ℂ → (0 +
𝑛) = 𝑛) |
| 2 | 1 | adantl 482 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 +
𝑛) = 𝑛) |
| 3 | | addid1 10216 |
. . 3
⊢ (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛) |
| 4 | 3 | adantl 482 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛) |
| 5 | | addcl 10018 |
. . 3
⊢ ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ) |
| 6 | 5 | adantl 482 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ) |
| 7 | | 0cnd 10033 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 0 ∈
ℂ) |
| 8 | | cnvimass 5485 |
. . . . 5
⊢ (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 |
| 9 | | isercoll.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:ℕ⟶𝑍) |
| 10 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍) |
| 11 | | fdm 6051 |
. . . . . 6
⊢ (𝐺:ℕ⟶𝑍 → dom 𝐺 = ℕ) |
| 12 | 10, 11 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → dom 𝐺 = ℕ) |
| 13 | 8, 12 | syl5sseq 3653 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) |
| 14 | | isercoll.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 15 | | isercoll.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 16 | | isercoll.i |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) < (𝐺‘(𝑘 + 1))) |
| 17 | 14, 15, 9, 16 | isercolllem1 14395 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
| 18 | 13, 17 | syldan 487 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
| 19 | 14, 15, 9, 16 | isercolllem2 14396 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) →
(1...(#‘(𝐺 “
(◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁))) |
| 20 | | isoeq4 6570 |
. . . 4
⊢
((1...(#‘(𝐺
“ (◡𝐺 “ (𝑀...𝑁))))) = (◡𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |
| 21 | 19, 20 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((◡𝐺 “ (𝑀...𝑁)), (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |
| 22 | 18, 21 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 ↾ (◡𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))), (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) |
| 23 | 8 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺) |
| 24 | | sseqin2 3817 |
. . . . 5
⊢ ((◡𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) |
| 25 | 23, 24 | sylib 208 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = (◡𝐺 “ (𝑀...𝑁))) |
| 26 | | 1nn 11031 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 27 | 26 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
ℕ) |
| 28 | | ffvelrn 6357 |
. . . . . . . . . 10
⊢ ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) →
(𝐺‘1) ∈ 𝑍) |
| 29 | 9, 26, 28 | sylancl 694 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈ 𝑍) |
| 30 | 29, 14 | syl6eleq 2711 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
| 31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
| 32 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝑁 ∈
(ℤ≥‘(𝐺‘1))) |
| 33 | | elfzuzb 12336 |
. . . . . . 7
⊢ ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1)))) |
| 34 | 31, 32, 33 | sylanbrc 698 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁)) |
| 35 | | ffn 6045 |
. . . . . . 7
⊢ (𝐺:ℕ⟶𝑍 → 𝐺 Fn ℕ) |
| 36 | | elpreima 6337 |
. . . . . . 7
⊢ (𝐺 Fn ℕ → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
| 37 | 10, 35, 36 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (1 ∈
(◡𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁)))) |
| 38 | 27, 34, 37 | mpbir2and 957 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 1 ∈
(◡𝐺 “ (𝑀...𝑁))) |
| 39 | | ne0i 3921 |
. . . . 5
⊢ (1 ∈
(◡𝐺 “ (𝑀...𝑁)) → (◡𝐺 “ (𝑀...𝑁)) ≠ ∅) |
| 40 | 38, 39 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (◡𝐺 “ (𝑀...𝑁)) ≠ ∅) |
| 41 | 25, 40 | eqnetrd 2861 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
| 42 | | imadisj 5484 |
. . . 4
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) = ∅) |
| 43 | 42 | necon3bii 2846 |
. . 3
⊢ ((𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
| 44 | 41, 43 | sylibr 224 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ≠ ∅) |
| 45 | | ffun 6048 |
. . . 4
⊢ (𝐺:ℕ⟶𝑍 → Fun 𝐺) |
| 46 | | funimacnv 5970 |
. . . 4
⊢ (Fun
𝐺 → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
| 47 | 10, 45, 46 | 3syl 18 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺)) |
| 48 | | inss1 3833 |
. . . 4
⊢ ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁) |
| 49 | 48 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)) |
| 50 | 47, 49 | eqsstrd 3639 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝐺 “ (◡𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁)) |
| 51 | | simpl 473 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → 𝜑) |
| 52 | | elfzuz 12338 |
. . . 4
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 53 | 52, 14 | syl6eleqr 2712 |
. . 3
⊢ (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ 𝑍) |
| 54 | | isercoll.f |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
| 55 | 51, 53, 54 | syl2an 494 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹‘𝑛) ∈ ℂ) |
| 56 | 47 | difeq2d 3728 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺))) |
| 57 | | difin 3861 |
. . . . . 6
⊢ ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺) |
| 58 | 56, 57 | syl6eq 2672 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺)) |
| 59 | 53 | ssriv 3607 |
. . . . . 6
⊢ (𝑀...𝑁) ⊆ 𝑍 |
| 60 | | ssdif 3745 |
. . . . . 6
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) |
| 61 | 59, 60 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺)) |
| 62 | 58, 61 | eqsstrd 3639 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺)) |
| 63 | 62 | sselda 3603 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺)) |
| 64 | | isercoll.0 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
| 65 | 64 | adantlr 751 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹‘𝑛) = 0) |
| 66 | 63, 65 | syldan 487 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → (𝐹‘𝑛) = 0) |
| 67 | | elfznn 12370 |
. . . 4
⊢ (𝑘 ∈ (1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ) |
| 68 | | isercoll.h |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 69 | 51, 67, 68 | syl2an 494 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘(𝐺‘𝑘))) |
| 70 | 19 | eleq2d 2687 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (𝑘 ∈ (1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁)))) |
| 71 | 70 | biimpa 501 |
. . . . 5
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (◡𝐺 “ (𝑀...𝑁))) |
| 72 | | fvres 6207 |
. . . . 5
⊢ (𝑘 ∈ (◡𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺‘𝑘)) |
| 73 | 71, 72 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺‘𝑘)) |
| 74 | 73 | fveq2d 6195 |
. . 3
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺‘𝑘))) |
| 75 | 69, 74 | eqtr4d 2659 |
. 2
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) → (𝐻‘𝑘) = (𝐹‘((𝐺 ↾ (◡𝐺 “ (𝑀...𝑁)))‘𝑘))) |
| 76 | 2, 4, 6, 7, 22, 44, 50, 55, 66, 75 | seqcoll2 13249 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(#‘(𝐺 “ (◡𝐺 “ (𝑀...𝑁)))))) |