![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumrpcl | Structured version Visualization version GIF version |
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumrpcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumrpcl.2 | ⊢ 𝑊 = (ℤ≥‘𝑁) |
isumrpcl.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
isumrpcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumrpcl.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) |
isumrpcl.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumrpcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrpcl.2 | . . 3 ⊢ 𝑊 = (ℤ≥‘𝑁) | |
2 | isumrpcl.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | isumrpcl.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | syl6eleq 2711 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 11697 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | uzss 11708 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 1, 3 | 3sstr4g 3646 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
10 | 9 | sselda 3603 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
11 | isumrpcl.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
12 | 10, 11 | syldan 487 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) = 𝐴) |
13 | isumrpcl.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) | |
14 | 13 | rpred 11872 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
15 | 10, 14 | syldan 487 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℝ) |
16 | isumrpcl.6 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
17 | 11, 13 | eqeltrd 2701 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ+) |
18 | 17 | rpcnd 11874 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
19 | 3, 2, 18 | iserex 14387 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
20 | 16, 19 | mpbid 222 | . . 3 ⊢ (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
21 | 1, 6, 12, 15, 20 | isumrecl 14496 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ) |
22 | 17 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+) |
23 | fveq2 6191 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
24 | 23 | eleq1d 2686 | . . . 4 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑁) ∈ ℝ+)) |
25 | 24 | rspcv 3305 | . . 3 ⊢ (𝑁 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+ → (𝐹‘𝑁) ∈ ℝ+)) |
26 | 2, 22, 25 | sylc 65 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
27 | seq1 12814 | . . . 4 ⊢ (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) | |
28 | 6, 27 | syl 17 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
29 | uzid 11702 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
30 | 6, 29 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
31 | 30, 1 | syl6eleqr 2712 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
32 | 15 | recnd 10068 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℂ) |
33 | 1, 6, 12, 32, 20 | isumclim2 14489 | . . . 4 ⊢ (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑊 𝐴) |
34 | 9 | sseld 3602 | . . . . . . 7 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → 𝑚 ∈ 𝑍)) |
35 | fveq2 6191 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
36 | 35 | eleq1d 2686 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑚) ∈ ℝ+)) |
37 | 36 | rspcv 3305 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+ → (𝐹‘𝑚) ∈ ℝ+)) |
38 | 34, 22, 37 | syl6ci 71 | . . . . . 6 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → (𝐹‘𝑚) ∈ ℝ+)) |
39 | 38 | imp 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ+) |
40 | 39 | rpred 11872 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ) |
41 | 39 | rpge0d 11876 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 0 ≤ (𝐹‘𝑚)) |
42 | 1, 31, 33, 40, 41 | climserle 14393 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
43 | 28, 42 | eqbrtrrd 4677 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
44 | 21, 26, 43 | rpgecld 11911 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 dom cdm 5114 ‘cfv 5888 ℝcr 9935 + caddc 9939 ≤ cle 10075 ℤcz 11377 ℤ≥cuz 11687 ℝ+crp 11832 seqcseq 12801 ⇝ cli 14215 Σcsu 14416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 |
This theorem is referenced by: effsumlt 14841 eirrlem 14932 aaliou3lem3 24099 |
Copyright terms: Public domain | W3C validator |