| Step | Hyp | Ref
| Expression |
| 1 | | esum 14811 |
. . . . . . . . . 10
⊢ e =
Σ𝑘 ∈
ℕ0 (1 / (!‘𝑘)) |
| 2 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
| 3 | 2 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘))) |
| 4 | | eirr.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) |
| 5 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ (1 /
(!‘𝑘)) ∈
V |
| 6 | 3, 4, 5 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (𝐹‘𝑘) = (1 / (!‘𝑘))) |
| 7 | 6 | sumeq2i 14429 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ ℕ0 (1 /
(!‘𝑘)) |
| 8 | 1, 7 | eqtr4i 2647 |
. . . . . . . . 9
⊢ e =
Σ𝑘 ∈
ℕ0 (𝐹‘𝑘) |
| 9 | | nn0uz 11722 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 10 | | eqid 2622 |
. . . . . . . . . 10
⊢
(ℤ≥‘(𝑄 + 1)) =
(ℤ≥‘(𝑄 + 1)) |
| 11 | | eirr.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ ℕ) |
| 12 | 11 | peano2nnd 11037 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 + 1) ∈ ℕ) |
| 13 | 12 | nnnn0d 11351 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 + 1) ∈
ℕ0) |
| 14 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 15 | | nn0z 11400 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 16 | | 1exp 12889 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
| 18 | 17 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ ((1↑𝑛) /
(!‘𝑛)) = (1 /
(!‘𝑛))) |
| 19 | 18 | mpteq2ia 4740 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
↦ ((1↑𝑛) /
(!‘𝑛))) = (𝑛 ∈ ℕ0
↦ (1 / (!‘𝑛))) |
| 20 | 4, 19 | eqtr4i 2647 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
((1↑𝑛) /
(!‘𝑛))) |
| 21 | 20 | eftval 14807 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (𝐹‘𝑘) = ((1↑𝑘) / (!‘𝑘))) |
| 22 | 21 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1↑𝑘) / (!‘𝑘))) |
| 23 | | ax-1cn 9994 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
| 25 | | eftcl 14804 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 26 | 24, 25 | sylan 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((1↑𝑘) /
(!‘𝑘)) ∈
ℂ) |
| 27 | 22, 26 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
| 28 | 20 | efcllem 14808 |
. . . . . . . . . . 11
⊢ (1 ∈
ℂ → seq0( + , 𝐹)
∈ dom ⇝ ) |
| 29 | 24, 28 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |
| 30 | 9, 10, 13, 14, 27, 29 | isumsplit 14572 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
| 31 | 8, 30 | syl5eq 2668 |
. . . . . . . 8
⊢ (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
| 32 | 11 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 33 | | pncan 10287 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑄 + 1)
− 1) = 𝑄) |
| 34 | 32, 23, 33 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑄 + 1) − 1) = 𝑄) |
| 35 | 34 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄)) |
| 36 | 35 | sumeq1d 14431 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) |
| 37 | 36 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
| 38 | 31, 37 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
| 39 | 38 | oveq1d 6665 |
. . . . . 6
⊢ (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) = ((Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘))) |
| 40 | | fzfid 12772 |
. . . . . . . 8
⊢ (𝜑 → (0...𝑄) ∈ Fin) |
| 41 | | elfznn0 12433 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0) |
| 42 | 41, 27 | sylan2 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (𝐹‘𝑘) ∈ ℂ) |
| 43 | 40, 42 | fsumcl 14464 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) ∈ ℂ) |
| 44 | 6 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (1 / (!‘𝑘))) |
| 45 | | faccl 13070 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 46 | 45 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℕ) |
| 47 | 46 | nnrpd 11870 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℝ+) |
| 48 | 47 | rpreccld 11882 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(!‘𝑘)) ∈
ℝ+) |
| 49 | 44, 48 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈
ℝ+) |
| 50 | 9, 10, 13, 14, 49, 29 | isumrpcl 14575 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈
ℝ+) |
| 51 | 50 | rpred 11872 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℝ) |
| 52 | 51 | recnd 10068 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℂ) |
| 53 | 43, 52 | pncan2d 10394 |
. . . . . 6
⊢ (𝜑 → ((Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) |
| 54 | 39, 53 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) |
| 55 | 54 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · (e −
Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
| 56 | 11 | nnnn0d 11351 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈
ℕ0) |
| 57 | | faccl 13070 |
. . . . . . 7
⊢ (𝑄 ∈ ℕ0
→ (!‘𝑄) ∈
ℕ) |
| 58 | 56, 57 | syl 17 |
. . . . . 6
⊢ (𝜑 → (!‘𝑄) ∈ ℕ) |
| 59 | 58 | nncnd 11036 |
. . . . 5
⊢ (𝜑 → (!‘𝑄) ∈ ℂ) |
| 60 | | ere 14819 |
. . . . . . 7
⊢ e ∈
ℝ |
| 61 | 60 | recni 10052 |
. . . . . 6
⊢ e ∈
ℂ |
| 62 | 61 | a1i 11 |
. . . . 5
⊢ (𝜑 → e ∈
ℂ) |
| 63 | 59, 62, 43 | subdid 10486 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · (e −
Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)))) |
| 64 | 55, 63 | eqtr3d 2658 |
. . 3
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)))) |
| 65 | | eirr.4 |
. . . . . . 7
⊢ (𝜑 → e = (𝑃 / 𝑄)) |
| 66 | 65 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → ((!‘𝑄) · e) = ((!‘𝑄) · (𝑃 / 𝑄))) |
| 67 | | eirr.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 68 | 67 | zcnd 11483 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 69 | 11 | nnne0d 11065 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ≠ 0) |
| 70 | 59, 68, 32, 69 | div12d 10837 |
. . . . . 6
⊢ (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄))) |
| 71 | 66, 70 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → ((!‘𝑄) · e) = (𝑃 · ((!‘𝑄) / 𝑄))) |
| 72 | 11 | nnred 11035 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 73 | 72 | leidd 10594 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ≤ 𝑄) |
| 74 | | facdiv 13074 |
. . . . . . . 8
⊢ ((𝑄 ∈ ℕ0
∧ 𝑄 ∈ ℕ
∧ 𝑄 ≤ 𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ) |
| 75 | 56, 11, 73, 74 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ) |
| 76 | 75 | nnzd 11481 |
. . . . . 6
⊢ (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ) |
| 77 | 67, 76 | zmulcld 11488 |
. . . . 5
⊢ (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ) |
| 78 | 71, 77 | eqeltrd 2701 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · e) ∈
ℤ) |
| 79 | 40, 59, 42 | fsummulc2 14516 |
. . . . 5
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹‘𝑘))) |
| 80 | 41 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0) |
| 81 | 80, 6 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (𝐹‘𝑘) = (1 / (!‘𝑘))) |
| 82 | 81 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘)))) |
| 83 | 59 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ) |
| 84 | 41, 46 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ) |
| 85 | 84 | nncnd 11036 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ) |
| 86 | | facne0 13073 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ≠
0) |
| 87 | 80, 86 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑘) ≠ 0) |
| 88 | 83, 85, 87 | divrecd 10804 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘)))) |
| 89 | 82, 88 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) = ((!‘𝑄) / (!‘𝑘))) |
| 90 | | permnn 13113 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ) |
| 91 | 90 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ) |
| 92 | 89, 91 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) ∈ ℕ) |
| 93 | 92 | nnzd 11481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) ∈ ℤ) |
| 94 | 40, 93 | fsumzcl 14466 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹‘𝑘)) ∈ ℤ) |
| 95 | 79, 94 | eqeltrd 2701 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) ∈ ℤ) |
| 96 | 78, 95 | zsubcld 11487 |
. . 3
⊢ (𝜑 → (((!‘𝑄) · e) −
((!‘𝑄) ·
Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘))) ∈ ℤ) |
| 97 | 64, 96 | eqeltrd 2701 |
. 2
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈ ℤ) |
| 98 | | 0zd 11389 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
| 99 | 58 | nnrpd 11870 |
. . . . 5
⊢ (𝜑 → (!‘𝑄) ∈
ℝ+) |
| 100 | 99, 50 | rpmulcld 11888 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈
ℝ+) |
| 101 | 100 | rpgt0d 11875 |
. . 3
⊢ (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
| 102 | 12 | peano2nnd 11037 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ) |
| 103 | 102 | nnred 11035 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ) |
| 104 | | faccl 13070 |
. . . . . . . . 9
⊢ ((𝑄 + 1) ∈ ℕ0
→ (!‘(𝑄 + 1))
∈ ℕ) |
| 105 | 13, 104 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (!‘(𝑄 + 1)) ∈
ℕ) |
| 106 | 105, 12 | nnmulcld 11068 |
. . . . . . 7
⊢ (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈
ℕ) |
| 107 | 103, 106 | nndivred 11069 |
. . . . . 6
⊢ (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ) |
| 108 | 58 | nnrecred 11066 |
. . . . . 6
⊢ (𝜑 → (1 / (!‘𝑄)) ∈
ℝ) |
| 109 | | abs1 14037 |
. . . . . . . . . . . 12
⊢
(abs‘1) = 1 |
| 110 | 109 | oveq1i 6660 |
. . . . . . . . . . 11
⊢
((abs‘1)↑𝑛) = (1↑𝑛) |
| 111 | 110 | oveq1i 6660 |
. . . . . . . . . 10
⊢
(((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛)) |
| 112 | 111 | mpteq2i 4741 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦
((1↑𝑛) /
(!‘𝑛))) |
| 113 | 20, 112 | eqtr4i 2647 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
(((abs‘1)↑𝑛) /
(!‘𝑛))) |
| 114 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦
((((abs‘1)↑(𝑄 +
1)) / (!‘(𝑄 + 1)))
· ((1 / ((𝑄 + 1) +
1))↑𝑛))) |
| 115 | | 1le1 10655 |
. . . . . . . . . 10
⊢ 1 ≤
1 |
| 116 | 109, 115 | eqbrtri 4674 |
. . . . . . . . 9
⊢
(abs‘1) ≤ 1 |
| 117 | 116 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (abs‘1) ≤
1) |
| 118 | 20, 113, 114, 12, 24, 117 | eftlub 14839 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))) |
| 119 | 50 | rprege0d 11879 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
| 120 | | absid 14036 |
. . . . . . . 8
⊢
((Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) |
| 121 | 119, 120 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) |
| 122 | 109 | oveq1i 6660 |
. . . . . . . . . 10
⊢
((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1)) |
| 123 | 12 | nnzd 11481 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 + 1) ∈ ℤ) |
| 124 | | 1exp 12889 |
. . . . . . . . . . 11
⊢ ((𝑄 + 1) ∈ ℤ →
(1↑(𝑄 + 1)) =
1) |
| 125 | 123, 124 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1↑(𝑄 + 1)) = 1) |
| 126 | 122, 125 | syl5eq 2668 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1) |
| 127 | 126 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝜑 →
(((abs‘1)↑(𝑄 +
1)) · (((𝑄 + 1) + 1)
/ ((!‘(𝑄 + 1))
· (𝑄 + 1)))) = (1
· (((𝑄 + 1) + 1) /
((!‘(𝑄 + 1)) ·
(𝑄 +
1))))) |
| 128 | 107 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ) |
| 129 | 128 | mulid2d 10058 |
. . . . . . . 8
⊢ (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) |
| 130 | 127, 129 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 →
(((abs‘1)↑(𝑄 +
1)) · (((𝑄 + 1) + 1)
/ ((!‘(𝑄 + 1))
· (𝑄 + 1)))) =
(((𝑄 + 1) + 1) /
((!‘(𝑄 + 1)) ·
(𝑄 + 1)))) |
| 131 | 118, 121,
130 | 3brtr3d 4684 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) |
| 132 | 12 | nnred 11035 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 + 1) ∈ ℝ) |
| 133 | 132, 132 | readdcld 10069 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ) |
| 134 | 132, 132 | remulcld 10070 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ) |
| 135 | | 1red 10055 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
| 136 | 11 | nnge1d 11063 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ 𝑄) |
| 137 | | 1nn 11031 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ |
| 138 | | nnleltp1 11432 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℕ ∧ 𝑄
∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1))) |
| 139 | 137, 11, 138 | sylancr 695 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1))) |
| 140 | 136, 139 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → 1 < (𝑄 + 1)) |
| 141 | 135, 132,
132, 140 | ltadd2dd 10196 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1))) |
| 142 | 12 | nncnd 11036 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 + 1) ∈ ℂ) |
| 143 | 142 | 2timesd 11275 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1))) |
| 144 | | df-2 11079 |
. . . . . . . . . . . 12
⊢ 2 = (1 +
1) |
| 145 | 135, 72, 135, 136 | leadd1dd 10641 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 + 1) ≤ (𝑄 + 1)) |
| 146 | 144, 145 | syl5eqbr 4688 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ (𝑄 + 1)) |
| 147 | | 2re 11090 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
| 148 | 147 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℝ) |
| 149 | 12 | nngt0d 11064 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < (𝑄 + 1)) |
| 150 | | lemul1 10875 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ (𝑄 +
1) ∈ ℝ ∧ ((𝑄
+ 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))) |
| 151 | 148, 132,
132, 149, 150 | syl112anc 1330 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))) |
| 152 | 146, 151 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))) |
| 153 | 143, 152 | eqbrtrrd 4677 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))) |
| 154 | 103, 133,
134, 141, 153 | ltletrd 10197 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1))) |
| 155 | | facp1 13065 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ ℕ0
→ (!‘(𝑄 + 1)) =
((!‘𝑄) ·
(𝑄 + 1))) |
| 156 | 56, 155 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1))) |
| 157 | 156 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄))) |
| 158 | 105 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘(𝑄 + 1)) ∈
ℂ) |
| 159 | 58 | nnne0d 11065 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘𝑄) ≠ 0) |
| 160 | 158, 59, 159 | divrecd 10804 |
. . . . . . . . . . 11
⊢ (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 /
(!‘𝑄)))) |
| 161 | 142, 59, 159 | divcan3d 10806 |
. . . . . . . . . . 11
⊢ (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1)) |
| 162 | 157, 160,
161 | 3eqtr3rd 2665 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄)))) |
| 163 | 162 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1))) |
| 164 | 108 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / (!‘𝑄)) ∈
ℂ) |
| 165 | 158, 164,
142 | mul32d 10246 |
. . . . . . . . 9
⊢ (𝜑 → (((!‘(𝑄 + 1)) · (1 /
(!‘𝑄))) ·
(𝑄 + 1)) =
(((!‘(𝑄 + 1))
· (𝑄 + 1)) ·
(1 / (!‘𝑄)))) |
| 166 | 163, 165 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))) |
| 167 | 154, 166 | breqtrd 4679 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 /
(!‘𝑄)))) |
| 168 | 106 | nnred 11035 |
. . . . . . . 8
⊢ (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈
ℝ) |
| 169 | 106 | nngt0d 11064 |
. . . . . . . 8
⊢ (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1))) |
| 170 | | ltdivmul 10898 |
. . . . . . . 8
⊢ ((((𝑄 + 1) + 1) ∈ ℝ ∧
(1 / (!‘𝑄)) ∈
ℝ ∧ (((!‘(𝑄
+ 1)) · (𝑄 + 1))
∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 /
(!‘𝑄))))) |
| 171 | 103, 108,
168, 169, 170 | syl112anc 1330 |
. . . . . . 7
⊢ (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 /
(!‘𝑄))))) |
| 172 | 167, 171 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄))) |
| 173 | 51, 107, 108, 131, 172 | lelttrd 10195 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) < (1 / (!‘𝑄))) |
| 174 | 51, 135, 99 | ltmuldiv2d 11920 |
. . . . 5
⊢ (𝜑 → (((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) < (1 / (!‘𝑄)))) |
| 175 | 173, 174 | mpbird 247 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < 1) |
| 176 | | 0p1e1 11132 |
. . . 4
⊢ (0 + 1) =
1 |
| 177 | 175, 176 | syl6breqr 4695 |
. . 3
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < (0 + 1)) |
| 178 | | btwnnz 11453 |
. . 3
⊢ ((0
∈ ℤ ∧ 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∧ ((!‘𝑄) · Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < (0 + 1)) → ¬ ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈ ℤ) |
| 179 | 98, 101, 177, 178 | syl3anc 1326 |
. 2
⊢ (𝜑 → ¬ ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈ ℤ) |
| 180 | 97, 179 | pm2.65i 185 |
1
⊢ ¬
𝜑 |