MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswlk Structured version   Visualization version   GIF version

Theorem iswlk 26506
Description: Properties of a pair of functions to be a walk. (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
wksfval.v 𝑉 = (Vtx‘𝐺)
wksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
iswlk ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘
Allowed substitution hints:   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑍(𝑘)

Proof of Theorem iswlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . . 3 (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺))
2 wksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 wksfval.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3wksfval 26505 . . . . 5 (𝐺𝑊 → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
543ad2ant1 1082 . . . 4 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
65eleq2d 2687 . . 3 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))}))
71, 6syl5bb 272 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))}))
8 eleq1 2689 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
98adantr 481 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
10 simpr 477 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
11 fveq2 6191 . . . . . . . 8 (𝑓 = 𝐹 → (#‘𝑓) = (#‘𝐹))
1211oveq2d 6666 . . . . . . 7 (𝑓 = 𝐹 → (0...(#‘𝑓)) = (0...(#‘𝐹)))
1312adantr 481 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0...(#‘𝑓)) = (0...(#‘𝐹)))
1410, 13feq12d 6033 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝:(0...(#‘𝑓))⟶𝑉𝑃:(0...(#‘𝐹))⟶𝑉))
1511oveq2d 6666 . . . . . . 7 (𝑓 = 𝐹 → (0..^(#‘𝑓)) = (0..^(#‘𝐹)))
1615adantr 481 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(#‘𝑓)) = (0..^(#‘𝐹)))
17 fveq1 6190 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑘) = (𝑃𝑘))
18 fveq1 6190 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
1917, 18eqeq12d 2637 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
2019adantl 482 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
21 fveq1 6190 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
2221fveq2d 6195 . . . . . . . 8 (𝑓 = 𝐹 → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
2317sneqd 4189 . . . . . . . 8 (𝑝 = 𝑃 → {(𝑝𝑘)} = {(𝑃𝑘)})
2422, 23eqeqan12d 2638 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝐼‘(𝑓𝑘)) = {(𝑝𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
2517, 18preq12d 4276 . . . . . . . . 9 (𝑝 = 𝑃 → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2625adantl 482 . . . . . . . 8 ((𝑓 = 𝐹𝑝 = 𝑃) → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2722adantr 481 . . . . . . . 8 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
2826, 27sseq12d 3634 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ({(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2920, 24, 28ifpbi123d 1027 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
3016, 29raleqbidv 3152 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))) ↔ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
319, 14, 303anbi123d 1399 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
3231opelopabga 4988 . . 3 ((𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
33323adant1 1079 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
347, 33bitrd 268 1 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  if-wif 1012  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  {copab 4712  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  wlkprop  26507  iswlkg  26509  wlkvtxeledg  26519  wlk1walk  26535  wlkres  26567  redwlk  26569  wlkp1  26578  wlkd  26583  lfgrwlkprop  26584  crctcshwlkn0  26713  upwlkwlk  41720  upgrwlkupwlk  41721
  Copyright terms: Public domain W3C validator