![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2y | Structured version Visualization version GIF version |
Description: Lemma for lclkr 36822. Restate the hypotheses for 𝐸 and 𝐺 to say their kernels are closed, in order to eliminate the generating vectors 𝑋 and 𝑌. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2y.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2y.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2y.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2y.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2y.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2y.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2y.p | ⊢ + = (+g‘𝐷) |
lclkrlem2y.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2y.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2y.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2y.le | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸)) |
lclkrlem2y.lg | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
Ref | Expression |
---|---|
lclkrlem2y | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2y.lg | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | |
2 | lclkrlem2y.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | lclkrlem2y.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lclkrlem2y.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | eqid 2622 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
6 | lclkrlem2y.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
7 | lclkrlem2y.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
8 | lclkrlem2y.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | lclkrlem2y.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | lcfl8a 36792 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ ∃𝑦 ∈ (Base‘𝑈)(𝐿‘𝐺) = ( ⊥ ‘{𝑦}))) |
11 | 1, 10 | mpbid 222 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ (Base‘𝑈)(𝐿‘𝐺) = ( ⊥ ‘{𝑦})) |
12 | lclkrlem2y.le | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸)) | |
13 | lclkrlem2y.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
14 | 2, 3, 4, 5, 6, 7, 8, 13 | lcfl8a 36792 | . . . . 5 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸) ↔ ∃𝑥 ∈ (Base‘𝑈)(𝐿‘𝐸) = ( ⊥ ‘{𝑥}))) |
15 | 12, 14 | mpbid 222 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝑈)(𝐿‘𝐸) = ( ⊥ ‘{𝑥})) |
16 | lclkrlem2y.d | . . . . . . . 8 ⊢ 𝐷 = (LDual‘𝑈) | |
17 | lclkrlem2y.p | . . . . . . . 8 ⊢ + = (+g‘𝐷) | |
18 | 8 | 3ad2ant1 1082 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
19 | simp21 1094 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → 𝑥 ∈ (Base‘𝑈)) | |
20 | simp23 1096 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → 𝑦 ∈ (Base‘𝑈)) | |
21 | 13 | 3ad2ant1 1082 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → 𝐸 ∈ 𝐹) |
22 | 9 | 3ad2ant1 1082 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → 𝐺 ∈ 𝐹) |
23 | simp22 1095 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → (𝐿‘𝐸) = ( ⊥ ‘{𝑥})) | |
24 | simp3 1063 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) | |
25 | 7, 2, 3, 4, 5, 6, 16, 17, 18, 19, 20, 21, 22, 23, 24 | lclkrlem2x 36819 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) ∧ (𝐿‘𝐺) = ( ⊥ ‘{𝑦})) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
26 | 25 | 3exp 1264 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑈) ∧ (𝐿‘𝐸) = ( ⊥ ‘{𝑥}) ∧ 𝑦 ∈ (Base‘𝑈)) → ((𝐿‘𝐺) = ( ⊥ ‘{𝑦}) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))))) |
27 | 26 | 3expd 1284 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑈) → ((𝐿‘𝐸) = ( ⊥ ‘{𝑥}) → (𝑦 ∈ (Base‘𝑈) → ((𝐿‘𝐺) = ( ⊥ ‘{𝑦}) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))))))) |
28 | 27 | rexlimdv 3030 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ (Base‘𝑈)(𝐿‘𝐸) = ( ⊥ ‘{𝑥}) → (𝑦 ∈ (Base‘𝑈) → ((𝐿‘𝐺) = ( ⊥ ‘{𝑦}) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))))) |
29 | 15, 28 | mpd 15 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (Base‘𝑈) → ((𝐿‘𝐺) = ( ⊥ ‘{𝑦}) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))))) |
30 | 29 | rexlimdv 3030 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (Base‘𝑈)(𝐿‘𝐺) = ( ⊥ ‘{𝑦}) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) |
31 | 11, 30 | mpd 15 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 {csn 4177 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 +gcplusg 15941 LFnlclfn 34344 LKerclk 34372 LDualcld 34410 HLchlt 34637 LHypclh 35270 DVecHcdvh 36367 ocHcoch 36636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-undef 7399 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-0g 16102 df-mre 16246 df-mrc 16247 df-acs 16249 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-cntz 17750 df-oppg 17776 df-lsm 18051 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-lmod 18865 df-lss 18933 df-lsp 18972 df-lvec 19103 df-lsatoms 34263 df-lshyp 34264 df-lcv 34306 df-lfl 34345 df-lkr 34373 df-ldual 34411 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 df-tgrp 36031 df-tendo 36043 df-edring 36045 df-dveca 36291 df-disoa 36318 df-dvech 36368 df-dib 36428 df-dic 36462 df-dih 36518 df-doch 36637 df-djh 36684 |
This theorem is referenced by: lclkrlem2 36821 |
Copyright terms: Public domain | W3C validator |