Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Visualization version   GIF version

Theorem lfl1dim 34408
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v 𝑉 = (Base‘𝑊)
lfl1dim.d 𝐷 = (Scalar‘𝑊)
lfl1dim.f 𝐹 = (LFnl‘𝑊)
lfl1dim.l 𝐿 = (LKer‘𝑊)
lfl1dim.k 𝐾 = (Base‘𝐷)
lfl1dim.t · = (.r𝐷)
lfl1dim.w (𝜑𝑊 ∈ LVec)
lfl1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1dim (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝐿   𝑘,𝑉   𝑘,𝑊   𝑔,𝑘,𝜑   · ,𝑘
Allowed substitution hints:   𝐷(𝑔)   · (𝑔)   𝐹(𝑔)   𝐺(𝑔)   𝐾(𝑔)   𝐿(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 2921 . 2 {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))}
2 lfl1dim.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
3 lveclmod 19106 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
5 lfl1dim.d . . . . . . . . . . . 12 𝐷 = (Scalar‘𝑊)
6 lfl1dim.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐷)
7 eqid 2622 . . . . . . . . . . . 12 (0g𝐷) = (0g𝐷)
85, 6, 7lmod0cl 18889 . . . . . . . . . . 11 (𝑊 ∈ LMod → (0g𝐷) ∈ 𝐾)
94, 8syl 17 . . . . . . . . . 10 (𝜑 → (0g𝐷) ∈ 𝐾)
109ad2antrr 762 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (0g𝐷) ∈ 𝐾)
11 simpr 477 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝑉 × {(0g𝐷)}))
12 lfl1dim.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
13 lfl1dim.f . . . . . . . . . . 11 𝐹 = (LFnl‘𝑊)
14 lfl1dim.t . . . . . . . . . . 11 · = (.r𝐷)
154ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LMod)
16 lfl1dim.g . . . . . . . . . . . 12 (𝜑𝐺𝐹)
1716ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 34369 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → (𝐺𝑓 · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
1911, 18eqtr4d 2659 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
20 sneq 4187 . . . . . . . . . . . . 13 (𝑘 = (0g𝐷) → {𝑘} = {(0g𝐷)})
2120xpeq2d 5139 . . . . . . . . . . . 12 (𝑘 = (0g𝐷) → (𝑉 × {𝑘}) = (𝑉 × {(0g𝐷)}))
2221oveq2d 6666 . . . . . . . . . . 11 (𝑘 = (0g𝐷) → (𝐺𝑓 · (𝑉 × {𝑘})) = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
2322eqeq2d 2632 . . . . . . . . . 10 (𝑘 = (0g𝐷) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) ↔ 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)}))))
2423rspcev 3309 . . . . . . . . 9 (((0g𝐷) ∈ 𝐾𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)}))) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
2510, 19, 24syl2anc 693 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
2625a1d 25 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝑔 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
279ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (0g𝐷) ∈ 𝐾)
28 lfl1dim.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
294ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑊 ∈ LMod)
30 simpllr 799 . . . . . . . . . . . . 13 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔𝐹)
3112, 13, 28, 29, 30lkrssv 34383 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) ⊆ 𝑉)
324adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝑊 ∈ LMod)
3316adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑔𝐹) → 𝐺𝐹)
345, 7, 12, 13, 28lkr0f 34381 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3532, 33, 34syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝑔𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
3635biimpar 502 . . . . . . . . . . . . . 14 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝐿𝐺) = 𝑉)
3736sseq1d 3632 . . . . . . . . . . . . 13 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ 𝑉 ⊆ (𝐿𝑔)))
3837biimpa 501 . . . . . . . . . . . 12 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑉 ⊆ (𝐿𝑔))
3931, 38eqssd 3620 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐿𝑔) = 𝑉)
405, 7, 12, 13, 28lkr0f 34381 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑔𝐹) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4129, 30, 40syl2anc 693 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ((𝐿𝑔) = 𝑉𝑔 = (𝑉 × {(0g𝐷)})))
4239, 41mpbid 222 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝑉 × {(0g𝐷)}))
4316ad3antrrr 766 . . . . . . . . . . 11 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝐺𝐹)
4412, 5, 13, 6, 14, 7, 29, 43lfl0sc 34369 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → (𝐺𝑓 · (𝑉 × {(0g𝐷)})) = (𝑉 × {(0g𝐷)}))
4542, 44eqtr4d 2659 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → 𝑔 = (𝐺𝑓 · (𝑉 × {(0g𝐷)})))
4627, 45, 24syl2anc 693 . . . . . . . 8 ((((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
4746ex 450 . . . . . . 7 (((𝜑𝑔𝐹) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
48 eqid 2622 . . . . . . . . 9 (LSHyp‘𝑊) = (LSHyp‘𝑊)
492ad2antrr 762 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑊 ∈ LVec)
5016ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺𝐹)
51 simprr 796 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
5212, 5, 7, 48, 13, 28lkrshp 34392 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
5349, 50, 51, 52syl3anc 1326 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝐺) ∈ (LSHyp‘𝑊))
54 simplr 792 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔𝐹)
55 simprl 794 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → 𝑔 ≠ (𝑉 × {(0g𝐷)}))
5612, 5, 7, 48, 13, 28lkrshp 34392 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝑔𝐹𝑔 ≠ (𝑉 × {(0g𝐷)})) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5749, 54, 55, 56syl3anc 1326 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → (𝐿𝑔) ∈ (LSHyp‘𝑊))
5848, 49, 53, 57lshpcmp 34275 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) = (𝐿𝑔)))
592ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑊 ∈ LVec)
6016ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝐺𝐹)
61 simpllr 799 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → 𝑔𝐹)
62 simpr 477 . . . . . . . . . 10 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → (𝐿𝐺) = (𝐿𝑔))
635, 6, 14, 12, 13, 28eqlkr2 34387 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝑔𝐹) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
6459, 60, 61, 62, 63syl121anc 1331 . . . . . . . . 9 ((((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) ∧ (𝐿𝐺) = (𝐿𝑔)) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))
6564ex 450 . . . . . . . 8 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) = (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
6658, 65sylbid 230 . . . . . . 7 (((𝜑𝑔𝐹) ∧ (𝑔 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)}))) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
6726, 47, 66pm2.61da2ne 2882 . . . . . 6 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) → ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
682ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑊 ∈ LVec)
6916ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝐺𝐹)
70 simpr 477 . . . . . . . . . 10 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → 𝑘𝐾)
7112, 5, 6, 14, 13, 28, 68, 69, 70lkrscss 34385 . . . . . . . . 9 (((𝜑𝑔𝐹) ∧ 𝑘𝐾) → (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))))
7271ex 450 . . . . . . . 8 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘})))))
73 fveq2 6191 . . . . . . . . . 10 (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝑔) = (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))))
7473sseq2d 3633 . . . . . . . . 9 (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ (𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘})))))
7574biimprcd 240 . . . . . . . 8 ((𝐿𝐺) ⊆ (𝐿‘(𝐺𝑓 · (𝑉 × {𝑘}))) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7672, 75syl6 35 . . . . . . 7 ((𝜑𝑔𝐹) → (𝑘𝐾 → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔))))
7776rexlimdv 3030 . . . . . 6 ((𝜑𝑔𝐹) → (∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → (𝐿𝐺) ⊆ (𝐿𝑔)))
7867, 77impbid 202 . . . . 5 ((𝜑𝑔𝐹) → ((𝐿𝐺) ⊆ (𝐿𝑔) ↔ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
7978pm5.32da 673 . . . 4 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))))
804adantr 481 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑊 ∈ LMod)
8116adantr 481 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝐺𝐹)
82 simpr 477 . . . . . . . . 9 ((𝜑𝑘𝐾) → 𝑘𝐾)
8312, 5, 6, 14, 13, 80, 81, 82lflvscl 34364 . . . . . . . 8 ((𝜑𝑘𝐾) → (𝐺𝑓 · (𝑉 × {𝑘})) ∈ 𝐹)
84 eleq1a 2696 . . . . . . . 8 ((𝐺𝑓 · (𝑉 × {𝑘})) ∈ 𝐹 → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → 𝑔𝐹))
8583, 84syl 17 . . . . . . 7 ((𝜑𝑘𝐾) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) → 𝑔𝐹))
8685pm4.71rd 667 . . . . . 6 ((𝜑𝑘𝐾) → (𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) ↔ (𝑔𝐹𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))))
8786rexbidva 3049 . . . . 5 (𝜑 → (∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})) ↔ ∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺𝑓 · (𝑉 × {𝑘})))))
88 r19.42v 3092 . . . . 5 (∃𝑘𝐾 (𝑔𝐹𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))) ↔ (𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
8987, 88syl6rbb 277 . . . 4 (𝜑 → ((𝑔𝐹 ∧ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))) ↔ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
9079, 89bitrd 268 . . 3 (𝜑 → ((𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔)) ↔ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))))
9190abbidv 2741 . 2 (𝜑 → {𝑔 ∣ (𝑔𝐹 ∧ (𝐿𝐺) ⊆ (𝐿𝑔))} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
921, 91syl5eq 2668 1 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘𝐾 𝑔 = (𝐺𝑓 · (𝑉 × {𝑘}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wrex 2913  {crab 2916  wss 3574  {csn 4177   × cxp 5112  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944  0gc0g 16100  LModclmod 18863  LVecclvec 19102  LSHypclsh 34262  LFnlclfn 34344  LKerclk 34372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264  df-lfl 34345  df-lkr 34373
This theorem is referenced by:  ldual1dim  34453
  Copyright terms: Public domain W3C validator