Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldual1dim Structured version   Visualization version   GIF version

Theorem ldual1dim 34453
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
ldual1dim.f 𝐹 = (LFnl‘𝑊)
ldual1dim.l 𝐿 = (LKer‘𝑊)
ldual1dim.d 𝐷 = (LDual‘𝑊)
ldual1dim.n 𝑁 = (LSpan‘𝐷)
ldual1dim.w (𝜑𝑊 ∈ LVec)
ldual1dim.g (𝜑𝐺𝐹)
Assertion
Ref Expression
ldual1dim (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑔,𝑁   𝜑,𝑔
Allowed substitution hints:   𝐹(𝑔)   𝐿(𝑔)   𝑊(𝑔)

Proof of Theorem ldual1dim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2622 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3 ldual1dim.d . . . . . . . 8 𝐷 = (LDual‘𝑊)
4 eqid 2622 . . . . . . . 8 (Scalar‘𝐷) = (Scalar‘𝐷)
5 eqid 2622 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
6 ldual1dim.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
71, 2, 3, 4, 5, 6ldualsbase 34420 . . . . . . 7 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑊)))
87eleq2d 2687 . . . . . 6 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝐷)) ↔ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
98anbi1d 741 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺))))
10 ldual1dim.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
11 eqid 2622 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
12 eqid 2622 . . . . . . . 8 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
13 eqid 2622 . . . . . . . 8 ( ·𝑠𝐷) = ( ·𝑠𝐷)
146adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LVec)
15 simpr 477 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
16 ldual1dim.g . . . . . . . . 9 (𝜑𝐺𝐹)
1716adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝐺𝐹)
1810, 11, 1, 2, 12, 3, 13, 14, 15, 17ldualvs 34424 . . . . . . 7 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝐷)𝐺) = (𝐺𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))
1918eqeq2d 2632 . . . . . 6 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ 𝑔 = (𝐺𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2019pm5.32da 673 . . . . 5 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
219, 20bitrd 268 . . . 4 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑔 = (𝑘( ·𝑠𝐷)𝐺)) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑔 = (𝐺𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘})))))
2221rexbidv2 3048 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))))
2322abbidv 2741 . 2 (𝜑 → {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
24 lveclmod 19106 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
253, 24lduallmod 34440 . . . 4 (𝑊 ∈ LVec → 𝐷 ∈ LMod)
266, 25syl 17 . . 3 (𝜑𝐷 ∈ LMod)
27 eqid 2622 . . . 4 (Base‘𝐷) = (Base‘𝐷)
2810, 3, 27, 6, 16ldualelvbase 34414 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
29 ldual1dim.n . . . 4 𝑁 = (LSpan‘𝐷)
304, 5, 27, 13, 29lspsn 19002 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷)) → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
3126, 28, 30syl2anc 693 . 2 (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝐷))𝑔 = (𝑘( ·𝑠𝐷)𝐺)})
32 ldual1dim.l . . 3 𝐿 = (LKer‘𝑊)
3311, 1, 10, 32, 2, 12, 6, 16lfl1dim 34408 . 2 (𝜑 → {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)} = {𝑔 ∣ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑔 = (𝐺𝑓 (.r‘(Scalar‘𝑊))((Base‘𝑊) × {𝑘}))})
3423, 31, 333eqtr4d 2666 1 (𝜑 → (𝑁‘{𝐺}) = {𝑔𝐹 ∣ (𝐿𝐺) ⊆ (𝐿𝑔)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  {crab 2916  wss 3574  {csn 4177   × cxp 5112  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  LModclmod 18863  LSpanclspn 18971  LVecclvec 19102  LFnlclfn 34344  LKerclk 34372  LDualcld 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264  df-lfl 34345  df-lkr 34373  df-ldual 34411
This theorem is referenced by:  mapdsn3  36932
  Copyright terms: Public domain W3C validator