Proof of Theorem lfl1dim
| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 2921 |
. 2
                       |
| 2 | | lfl1dim.w |
. . . . . . . . . . . 12
   |
| 3 | | lveclmod 19106 |
. . . . . . . . . . . 12

  |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
   |
| 5 | | lfl1dim.d |
. . . . . . . . . . . 12
Scalar   |
| 6 | | lfl1dim.k |
. . . . . . . . . . . 12
     |
| 7 | | eqid 2622 |
. . . . . . . . . . . 12
         |
| 8 | 5, 6, 7 | lmod0cl 18889 |
. . . . . . . . . . 11

      |
| 9 | 4, 8 | syl 17 |
. . . . . . . . . 10
       |
| 10 | 9 | ad2antrr 762 |
. . . . . . . . 9
            
      |
| 11 | | simpr 477 |
. . . . . . . . . 10
            

         |
| 12 | | lfl1dim.v |
. . . . . . . . . . 11
     |
| 13 | | lfl1dim.f |
. . . . . . . . . . 11
LFnl   |
| 14 | | lfl1dim.t |
. . . . . . . . . . 11
     |
| 15 | 4 | ad2antrr 762 |
. . . . . . . . . . 11
            
  |
| 16 | | lfl1dim.g |
. . . . . . . . . . . 12
   |
| 17 | 16 | ad2antrr 762 |
. . . . . . . . . . 11
            
  |
| 18 | 12, 5, 13, 6, 14, 7, 15, 17 | lfl0sc 34369 |
. . . . . . . . . 10
            
 
                   |
| 19 | 11, 18 | eqtr4d 2659 |
. . . . . . . . 9
            

            |
| 20 | | sneq 4187 |
. . . . . . . . . . . . 13
               |
| 21 | 20 | xpeq2d 5139 |
. . . . . . . . . . . 12
                   |
| 22 | 21 | oveq2d 6666 |
. . . . . . . . . . 11
              
          |
| 23 | 22 | eqeq2d 2632 |
. . . . . . . . . 10
            

             |
| 24 | 23 | rspcev 3309 |
. . . . . . . . 9
     
 
          
 
       |
| 25 | 10, 19, 24 | syl2anc 693 |
. . . . . . . 8
            


        |
| 26 | 25 | a1d 25 |
. . . . . . 7
            
        


         |
| 27 | 9 | ad3antrrr 766 |
. . . . . . . . 9
   

                        |
| 28 | | lfl1dim.l |
. . . . . . . . . . . . 13
LKer   |
| 29 | 4 | ad3antrrr 766 |
. . . . . . . . . . . . 13
   

                    |
| 30 | | simpllr 799 |
. . . . . . . . . . . . 13
   

                    |
| 31 | 12, 13, 28, 29, 30 | lkrssv 34383 |
. . . . . . . . . . . 12
   

                        |
| 32 | 4 | adantr 481 |
. . . . . . . . . . . . . . . 16
 
   |
| 33 | 16 | adantr 481 |
. . . . . . . . . . . . . . . 16
 
   |
| 34 | 5, 7, 12, 13, 28 | lkr0f 34381 |
. . . . . . . . . . . . . . . 16
       

          |
| 35 | 32, 33, 34 | syl2anc 693 |
. . . . . . . . . . . . . . 15
 
     

          |
| 36 | 35 | biimpar 502 |
. . . . . . . . . . . . . 14
            
      |
| 37 | 36 | sseq1d 3632 |
. . . . . . . . . . . . 13
            
        
       |
| 38 | 37 | biimpa 501 |
. . . . . . . . . . . 12
   

                        |
| 39 | 31, 38 | eqssd 3620 |
. . . . . . . . . . 11
   

                        |
| 40 | 5, 7, 12, 13, 28 | lkr0f 34381 |
. . . . . . . . . . . 12
       

          |
| 41 | 29, 30, 40 | syl2anc 693 |
. . . . . . . . . . 11
   

                      

          |
| 42 | 39, 41 | mpbid 222 |
. . . . . . . . . 10
   

                            |
| 43 | 16 | ad3antrrr 766 |
. . . . . . . . . . 11
   

                    |
| 44 | 12, 5, 13, 6, 14, 7, 29, 43 | lfl0sc 34369 |
. . . . . . . . . 10
   

                                       |
| 45 | 42, 44 | eqtr4d 2659 |
. . . . . . . . 9
   

                               |
| 46 | 27, 45, 24 | syl2anc 693 |
. . . . . . . 8
   

                  

        |
| 47 | 46 | ex 450 |
. . . . . . 7
            
        


         |
| 48 | | eqid 2622 |
. . . . . . . . 9
LSHyp  LSHyp   |
| 49 | 2 | ad2antrr 762 |
. . . . . . . . 9
                      
  |
| 50 | 16 | ad2antrr 762 |
. . . . . . . . . 10
                      
  |
| 51 | | simprr 796 |
. . . . . . . . . 10
                      

         |
| 52 | 12, 5, 7, 48, 13, 28 | lkrshp 34392 |
. . . . . . . . . 10
 
             LSHyp    |
| 53 | 49, 50, 51, 52 | syl3anc 1326 |
. . . . . . . . 9
                      
    LSHyp    |
| 54 | | simplr 792 |
. . . . . . . . . 10
                      
  |
| 55 | | simprl 794 |
. . . . . . . . . 10
                      

         |
| 56 | 12, 5, 7, 48, 13, 28 | lkrshp 34392 |
. . . . . . . . . 10
 
             LSHyp    |
| 57 | 49, 54, 55, 56 | syl3anc 1326 |
. . . . . . . . 9
                      
    LSHyp    |
| 58 | 48, 49, 53, 57 | lshpcmp 34275 |
. . . . . . . 8
                      
                    |
| 59 | 2 | ad3antrrr 766 |
. . . . . . . . . 10
   
                               |
| 60 | 16 | ad3antrrr 766 |
. . . . . . . . . 10
   
                               |
| 61 | | simpllr 799 |
. . . . . . . . . 10
   
                               |
| 62 | | simpr 477 |
. . . . . . . . . 10
   
                                       |
| 63 | 5, 6, 14, 12, 13, 28 | eqlkr2 34387 |
. . . . . . . . . 10
  
          
 
       |
| 64 | 59, 60, 61, 62, 63 | syl121anc 1331 |
. . . . . . . . 9
   
                             

        |
| 65 | 64 | ex 450 |
. . . . . . . 8
                      
         

         |
| 66 | 58, 65 | sylbid 230 |
. . . . . . 7
                      
        


         |
| 67 | 26, 47, 66 | pm2.61da2ne 2882 |
. . . . . 6
 
     
    

         |
| 68 | 2 | ad2antrr 762 |
. . . . . . . . . 10
       |
| 69 | 16 | ad2antrr 762 |
. . . . . . . . . 10
       |
| 70 | | simpr 477 |
. . . . . . . . . 10
       |
| 71 | 12, 5, 6, 14, 13, 28, 68, 69, 70 | lkrscss 34385 |
. . . . . . . . 9
                      |
| 72 | 71 | ex 450 |
. . . . . . . 8
 
     
              |
| 73 | | fveq2 6191 |
. . . . . . . . . 10
       
                 |
| 74 | 73 | sseq2d 3633 |
. . . . . . . . 9
       
                 
         |
| 75 | 74 | biimprcd 240 |
. . . . . . . 8
        
      
       
           |
| 76 | 72, 75 | syl6 35 |
. . . . . . 7
 
     
       
        |
| 77 | 76 | rexlimdv 3030 |
. . . . . 6
 
  
 
                |
| 78 | 67, 77 | impbid 202 |
. . . . 5
 
     
   


         |
| 79 | 78 | pm5.32da 673 |
. . . 4
             

          |
| 80 | 4 | adantr 481 |
. . . . . . . . 9
 
   |
| 81 | 16 | adantr 481 |
. . . . . . . . 9
 
   |
| 82 | | simpr 477 |
. . . . . . . . 9
 
   |
| 83 | 12, 5, 6, 14, 13, 80, 81, 82 | lflvscl 34364 |
. . . . . . . 8
 
          |
| 84 | | eleq1a 2696 |
. . . . . . . 8
   
   
       
   |
| 85 | 83, 84 | syl 17 |
. . . . . . 7
 
            |
| 86 | 85 | pm4.71rd 667 |
. . . . . 6
 
        

           |
| 87 | 86 | rexbidva 3049 |
. . . . 5
     
   


           |
| 88 | | r19.42v 3092 |
. . . . 5
  
 
     



         |
| 89 | 87, 88 | syl6rbb 277 |
. . . 4
   

       
 
        |
| 90 | 79, 89 | bitrd 268 |
. . 3
            
 
        |
| 91 | 90 | abbidv 2741 |
. 2
              
 
        |
| 92 | 1, 91 | syl5eq 2668 |
1
          
 
 
        |