MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcn2 Structured version   Visualization version   Unicode version

Theorem lmcn2 21452
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z  |-  Z  =  ( ZZ>= `  M )
txlm.m  |-  ( ph  ->  M  e.  ZZ )
txlm.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txlm.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txlm.f  |-  ( ph  ->  F : Z --> X )
txlm.g  |-  ( ph  ->  G : Z --> Y )
lmcn2.fl  |-  ( ph  ->  F ( ~~> t `  J ) R )
lmcn2.gl  |-  ( ph  ->  G ( ~~> t `  K ) S )
lmcn2.o  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
lmcn2.h  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
Assertion
Ref Expression
lmcn2  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Distinct variable groups:    n, F    n, O    ph, n    n, G    n, J    n, K    n, X    n, Y    n, Z
Allowed substitution hints:    R( n)    S( n)    H( n)    M( n)    N( n)

Proof of Theorem lmcn2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7  |-  ( ph  ->  F : Z --> X )
21ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  X )
3 txlm.g . . . . . . 7  |-  ( ph  ->  G : Z --> Y )
43ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( G `  n )  e.  Y )
5 opelxpi 5148 . . . . . 6  |-  ( ( ( F `  n
)  e.  X  /\  ( G `  n )  e.  Y )  ->  <. ( F `  n
) ,  ( G `
 n ) >.  e.  ( X  X.  Y
) )
62, 4, 5syl2anc 693 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( X  X.  Y ) )
7 eqidd 2623 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
)
8 txlm.j . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 txlm.k . . . . . . . 8  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
10 txtopon 21394 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
118, 9, 10syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
12 lmcn2.o . . . . . . . . 9  |-  ( ph  ->  O  e.  ( ( J  tX  K )  Cn  N ) )
13 cntop2 21045 . . . . . . . . 9  |-  ( O  e.  ( ( J 
tX  K )  Cn  N )  ->  N  e.  Top )
1412, 13syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  Top )
15 eqid 2622 . . . . . . . . 9  |-  U. N  =  U. N
1615toptopon 20722 . . . . . . . 8  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
1714, 16sylib 208 . . . . . . 7  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
18 cnf2 21053 . . . . . . 7  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  N  e.  (TopOn `  U. N )  /\  O  e.  ( ( J  tX  K
)  Cn  N ) )  ->  O :
( X  X.  Y
) --> U. N )
1911, 17, 12, 18syl3anc 1326 . . . . . 6  |-  ( ph  ->  O : ( X  X.  Y ) --> U. N )
2019feqmptd 6249 . . . . 5  |-  ( ph  ->  O  =  ( x  e.  ( X  X.  Y )  |->  ( O `
 x ) ) )
21 fveq2 6191 . . . . . 6  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
)
22 df-ov 6653 . . . . . 6  |-  ( ( F `  n ) O ( G `  n ) )  =  ( O `  <. ( F `  n ) ,  ( G `  n ) >. )
2321, 22syl6eqr 2674 . . . . 5  |-  ( x  =  <. ( F `  n ) ,  ( G `  n )
>.  ->  ( O `  x )  =  ( ( F `  n
) O ( G `
 n ) ) )
246, 7, 20, 23fmptco 6396 . . . 4  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  ( n  e.  Z  |->  ( ( F `  n
) O ( G `
 n ) ) ) )
25 lmcn2.h . . . 4  |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )
2624, 25syl6eqr 2674 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) )  =  H )
27 lmcn2.fl . . . . 5  |-  ( ph  ->  F ( ~~> t `  J ) R )
28 lmcn2.gl . . . . 5  |-  ( ph  ->  G ( ~~> t `  K ) S )
29 txlm.z . . . . . 6  |-  Z  =  ( ZZ>= `  M )
30 txlm.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
31 eqid 2622 . . . . . 6  |-  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n )
>. )
3229, 30, 8, 9, 1, 3, 31txlm 21451 . . . . 5  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )
( ~~> t `  ( J  tX  K ) )
<. R ,  S >. ) )
3327, 28, 32mpbi2and 956 . . . 4  |-  ( ph  ->  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. )
3433, 12lmcn 21109 . . 3  |-  ( ph  ->  ( O  o.  (
n  e.  Z  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) ) ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
3526, 34eqbrtrrd 4677 . 2  |-  ( ph  ->  H ( ~~> t `  N ) ( O `
 <. R ,  S >. ) )
36 df-ov 6653 . 2  |-  ( R O S )  =  ( O `  <. R ,  S >. )
3735, 36syl6breqr 4695 1  |-  ( ph  ->  H ( ~~> t `  N ) ( R O S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   ZZcz 11377   ZZ>=cuz 11687   Topctop 20698  TopOnctopon 20715    Cn ccn 21028   ~~> tclm 21030    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cnp 21032  df-lm 21033  df-tx 21365
This theorem is referenced by:  hlimadd  28050
  Copyright terms: Public domain W3C validator