MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem1a Structured version   Visualization version   Unicode version

Theorem metnrmlem1a 22661
Description: Lemma for metnrm 22665. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
metdscn.j  |-  J  =  ( MetOpen `  D )
metnrmlem.1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
metnrmlem.2  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
metnrmlem.3  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
metnrmlem.4  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
Assertion
Ref Expression
metnrmlem1a  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  ( F `  A )  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR+ )
)
Distinct variable groups:    x, y, A    x, D, y    y, J    x, T, y    x, S, y    x, X, y
Allowed substitution hints:    ph( x, y)    F( x, y)    J( x)

Proof of Theorem metnrmlem1a
StepHypRef Expression
1 metnrmlem.4 . . . . . 6  |-  ( ph  ->  ( S  i^i  T
)  =  (/) )
21adantr 481 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  ( S  i^i  T )  =  (/) )
3 inelcm 4032 . . . . . . . 8  |-  ( ( A  e.  S  /\  A  e.  T )  ->  ( S  i^i  T
)  =/=  (/) )
43expcom 451 . . . . . . 7  |-  ( A  e.  T  ->  ( A  e.  S  ->  ( S  i^i  T )  =/=  (/) ) )
54adantl 482 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  ( A  e.  S  ->  ( S  i^i  T )  =/=  (/) ) )
65necon2bd 2810 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
( S  i^i  T
)  =  (/)  ->  -.  A  e.  S )
)
72, 6mpd 15 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  -.  A  e.  S )
8 eqcom 2629 . . . . . 6  |-  ( 0  =  ( F `  A )  <->  ( F `  A )  =  0 )
9 metnrmlem.1 . . . . . . . 8  |-  ( ph  ->  D  e.  ( *Met `  X ) )
109adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  D  e.  ( *Met `  X ) )
11 metnrmlem.2 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ( Clsd `  J ) )
1211adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  T )  ->  S  e.  ( Clsd `  J
) )
13 eqid 2622 . . . . . . . . . 10  |-  U. J  =  U. J
1413cldss 20833 . . . . . . . . 9  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
1512, 14syl 17 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  S  C_ 
U. J )
16 metdscn.j . . . . . . . . . 10  |-  J  =  ( MetOpen `  D )
1716mopnuni 22246 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
1810, 17syl 17 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  X  =  U. J )
1915, 18sseqtr4d 3642 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  S  C_  X )
20 metnrmlem.3 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  ( Clsd `  J ) )
2120adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  T )  ->  T  e.  ( Clsd `  J
) )
2213cldss 20833 . . . . . . . . . 10  |-  ( T  e.  ( Clsd `  J
)  ->  T  C_  U. J
)
2321, 22syl 17 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  T )  ->  T  C_ 
U. J )
2423, 18sseqtr4d 3642 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  T  C_  X )
25 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  A  e.  T )  ->  A  e.  T )
2624, 25sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  A  e.  X )
27 metdscn.f . . . . . . . 8  |-  F  =  ( x  e.  X  |-> inf ( ran  ( y  e.  S  |->  ( x D y ) ) ,  RR* ,  <  )
)
2827, 16metdseq0 22657 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X  /\  A  e.  X
)  ->  ( ( F `  A )  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
2910, 19, 26, 28syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  (
( F `  A
)  =  0  <->  A  e.  ( ( cls `  J
) `  S )
) )
308, 29syl5bb 272 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
0  =  ( F `
 A )  <->  A  e.  ( ( cls `  J
) `  S )
) )
31 cldcls 20846 . . . . . . 7  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  S )
3212, 31syl 17 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  (
( cls `  J
) `  S )  =  S )
3332eleq2d 2687 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  ( A  e.  ( ( cls `  J ) `  S )  <->  A  e.  S ) )
3430, 33bitrd 268 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  (
0  =  ( F `
 A )  <->  A  e.  S ) )
357, 34mtbird 315 . . 3  |-  ( (
ph  /\  A  e.  T )  ->  -.  0  =  ( F `  A ) )
3627metdsf 22651 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  S  C_  X
)  ->  F : X
--> ( 0 [,] +oo ) )
3710, 19, 36syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  A  e.  T )  ->  F : X --> ( 0 [,] +oo ) )
3837, 26ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  ( F `  A )  e.  ( 0 [,] +oo ) )
39 elxrge0 12281 . . . . . . 7  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  <->  ( ( F `
 A )  e. 
RR*  /\  0  <_  ( F `  A ) ) )
4039simprbi 480 . . . . . 6  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  0  <_ 
( F `  A
) )
4138, 40syl 17 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  0  <_  ( F `  A
) )
42 0xr 10086 . . . . . 6  |-  0  e.  RR*
4339simplbi 476 . . . . . . 7  |-  ( ( F `  A )  e.  ( 0 [,] +oo )  ->  ( F `
 A )  e. 
RR* )
4438, 43syl 17 . . . . . 6  |-  ( (
ph  /\  A  e.  T )  ->  ( F `  A )  e.  RR* )
45 xrleloe 11977 . . . . . 6  |-  ( ( 0  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
4642, 44, 45sylancr 695 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <_  ( F `  A )  <->  ( 0  <  ( F `  A )  \/  0  =  ( F `  A ) ) ) )
4741, 46mpbid 222 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  ( F `  A )  \/  0  =  ( F `  A ) ) )
4847ord 392 . . 3  |-  ( (
ph  /\  A  e.  T )  ->  ( -.  0  <  ( F `
 A )  -> 
0  =  ( F `
 A ) ) )
4935, 48mt3d 140 . 2  |-  ( (
ph  /\  A  e.  T )  ->  0  <  ( F `  A
) )
50 1re 10039 . . . . . 6  |-  1  e.  RR
5150rexri 10097 . . . . 5  |-  1  e.  RR*
52 ifcl 4130 . . . . 5  |-  ( ( 1  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR* )
5351, 44, 52sylancr 695 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR* )
54 1red 10055 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  1  e.  RR )
55 0lt1 10550 . . . . . 6  |-  0  <  1
56 breq2 4657 . . . . . . 7  |-  ( 1  =  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  -> 
( 0  <  1  <->  0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
57 breq2 4657 . . . . . . 7  |-  ( ( F `  A )  =  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  -> 
( 0  <  ( F `  A )  <->  0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
5856, 57ifboth 4124 . . . . . 6  |-  ( ( 0  <  1  /\  0  <  ( F `
 A ) )  ->  0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) )
5955, 49, 58sylancr 695 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  0  <  if ( 1  <_ 
( F `  A
) ,  1 ,  ( F `  A
) ) )
60 xrltle 11982 . . . . . 6  |-  ( ( 0  e.  RR*  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR* )  ->  ( 0  <  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  ->  0  <_  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
6142, 53, 60sylancr 695 . . . . 5  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  -> 
0  <_  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) ) ) )
6259, 61mpd 15 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  0  <_  if ( 1  <_ 
( F `  A
) ,  1 ,  ( F `  A
) ) )
63 xrmin1 12008 . . . . 5  |-  ( ( 1  e.  RR*  /\  ( F `  A )  e.  RR* )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  <_  1 )
6451, 44, 63sylancr 695 . . . 4  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  <_  1 )
65 xrrege0 12005 . . . 4  |-  ( ( ( if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e. 
RR*  /\  1  e.  RR )  /\  (
0  <_  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  <_  1 ) )  ->  if (
1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR )
6653, 54, 62, 64, 65syl22anc 1327 . . 3  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR )
6766, 59elrpd 11869 . 2  |-  ( (
ph  /\  A  e.  T )  ->  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR+ )
6849, 67jca 554 1  |-  ( (
ph  /\  A  e.  T )  ->  (
0  <  ( F `  A )  /\  if ( 1  <_  ( F `  A ) ,  1 ,  ( F `  A ) )  e.  RR+ )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   [,]cicc 12178   *Metcxmt 19731   MetOpencmopn 19736   Clsdccld 20820   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  metnrmlem2  22663  metnrmlem3  22664
  Copyright terms: Public domain W3C validator