| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metnrmlem1a | Structured version Visualization version Unicode version | ||
| Description: Lemma for metnrm 22665. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| metdscn.f |
|
| metdscn.j |
|
| metnrmlem.1 |
|
| metnrmlem.2 |
|
| metnrmlem.3 |
|
| metnrmlem.4 |
|
| Ref | Expression |
|---|---|
| metnrmlem1a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metnrmlem.4 |
. . . . . 6
| |
| 2 | 1 | adantr 481 |
. . . . 5
|
| 3 | inelcm 4032 |
. . . . . . . 8
| |
| 4 | 3 | expcom 451 |
. . . . . . 7
|
| 5 | 4 | adantl 482 |
. . . . . 6
|
| 6 | 5 | necon2bd 2810 |
. . . . 5
|
| 7 | 2, 6 | mpd 15 |
. . . 4
|
| 8 | eqcom 2629 |
. . . . . 6
| |
| 9 | metnrmlem.1 |
. . . . . . . 8
| |
| 10 | 9 | adantr 481 |
. . . . . . 7
|
| 11 | metnrmlem.2 |
. . . . . . . . . 10
| |
| 12 | 11 | adantr 481 |
. . . . . . . . 9
|
| 13 | eqid 2622 |
. . . . . . . . . 10
| |
| 14 | 13 | cldss 20833 |
. . . . . . . . 9
|
| 15 | 12, 14 | syl 17 |
. . . . . . . 8
|
| 16 | metdscn.j |
. . . . . . . . . 10
| |
| 17 | 16 | mopnuni 22246 |
. . . . . . . . 9
|
| 18 | 10, 17 | syl 17 |
. . . . . . . 8
|
| 19 | 15, 18 | sseqtr4d 3642 |
. . . . . . 7
|
| 20 | metnrmlem.3 |
. . . . . . . . . . 11
| |
| 21 | 20 | adantr 481 |
. . . . . . . . . 10
|
| 22 | 13 | cldss 20833 |
. . . . . . . . . 10
|
| 23 | 21, 22 | syl 17 |
. . . . . . . . 9
|
| 24 | 23, 18 | sseqtr4d 3642 |
. . . . . . . 8
|
| 25 | simpr 477 |
. . . . . . . 8
| |
| 26 | 24, 25 | sseldd 3604 |
. . . . . . 7
|
| 27 | metdscn.f |
. . . . . . . 8
| |
| 28 | 27, 16 | metdseq0 22657 |
. . . . . . 7
|
| 29 | 10, 19, 26, 28 | syl3anc 1326 |
. . . . . 6
|
| 30 | 8, 29 | syl5bb 272 |
. . . . 5
|
| 31 | cldcls 20846 |
. . . . . . 7
| |
| 32 | 12, 31 | syl 17 |
. . . . . 6
|
| 33 | 32 | eleq2d 2687 |
. . . . 5
|
| 34 | 30, 33 | bitrd 268 |
. . . 4
|
| 35 | 7, 34 | mtbird 315 |
. . 3
|
| 36 | 27 | metdsf 22651 |
. . . . . . . 8
|
| 37 | 10, 19, 36 | syl2anc 693 |
. . . . . . 7
|
| 38 | 37, 26 | ffvelrnd 6360 |
. . . . . 6
|
| 39 | elxrge0 12281 |
. . . . . . 7
| |
| 40 | 39 | simprbi 480 |
. . . . . 6
|
| 41 | 38, 40 | syl 17 |
. . . . 5
|
| 42 | 0xr 10086 |
. . . . . 6
| |
| 43 | 39 | simplbi 476 |
. . . . . . 7
|
| 44 | 38, 43 | syl 17 |
. . . . . 6
|
| 45 | xrleloe 11977 |
. . . . . 6
| |
| 46 | 42, 44, 45 | sylancr 695 |
. . . . 5
|
| 47 | 41, 46 | mpbid 222 |
. . . 4
|
| 48 | 47 | ord 392 |
. . 3
|
| 49 | 35, 48 | mt3d 140 |
. 2
|
| 50 | 1re 10039 |
. . . . . 6
| |
| 51 | 50 | rexri 10097 |
. . . . 5
|
| 52 | ifcl 4130 |
. . . . 5
| |
| 53 | 51, 44, 52 | sylancr 695 |
. . . 4
|
| 54 | 1red 10055 |
. . . 4
| |
| 55 | 0lt1 10550 |
. . . . . 6
| |
| 56 | breq2 4657 |
. . . . . . 7
| |
| 57 | breq2 4657 |
. . . . . . 7
| |
| 58 | 56, 57 | ifboth 4124 |
. . . . . 6
|
| 59 | 55, 49, 58 | sylancr 695 |
. . . . 5
|
| 60 | xrltle 11982 |
. . . . . 6
| |
| 61 | 42, 53, 60 | sylancr 695 |
. . . . 5
|
| 62 | 59, 61 | mpd 15 |
. . . 4
|
| 63 | xrmin1 12008 |
. . . . 5
| |
| 64 | 51, 44, 63 | sylancr 695 |
. . . 4
|
| 65 | xrrege0 12005 |
. . . 4
| |
| 66 | 53, 54, 62, 64, 65 | syl22anc 1327 |
. . 3
|
| 67 | 66, 59 | elrpd 11869 |
. 2
|
| 68 | 49, 67 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 |
| This theorem is referenced by: metnrmlem2 22663 metnrmlem3 22664 |
| Copyright terms: Public domain | W3C validator |