MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3a Structured version   Visualization version   GIF version

Theorem minveclem3a 23198
Description: Lemma for minvec 23207. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem3a (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Distinct variable groups:   𝑦,   𝑦,𝐴   𝑦,𝐽   𝑦,𝑁   𝜑,𝑦   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋   𝑦,𝑌   𝑦,𝐷   𝑦,𝑆

Proof of Theorem minveclem3a
StepHypRef Expression
1 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
2 eqid 2622 . . . 4 (Base‘(𝑈s 𝑌)) = (Base‘(𝑈s 𝑌))
3 eqid 2622 . . . 4 ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
42, 3cmscmet 23143 . . 3 ((𝑈s 𝑌) ∈ CMetSp → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
51, 4syl 17 . 2 (𝜑 → ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))) ∈ (CMet‘(Base‘(𝑈s 𝑌))))
6 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
76reseq1i 5392 . . 3 (𝐷 ↾ (𝑌 × 𝑌)) = (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌))
8 minvec.y . . . . . . 7 (𝜑𝑌 ∈ (LSubSp‘𝑈))
9 minvec.x . . . . . . . 8 𝑋 = (Base‘𝑈)
10 eqid 2622 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
119, 10lssss 18937 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
128, 11syl 17 . . . . . 6 (𝜑𝑌𝑋)
13 xpss12 5225 . . . . . 6 ((𝑌𝑋𝑌𝑋) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1412, 12, 13syl2anc 693 . . . . 5 (𝜑 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
1514resabs1d 5428 . . . 4 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘𝑈) ↾ (𝑌 × 𝑌)))
16 eqid 2622 . . . . . . 7 (𝑈s 𝑌) = (𝑈s 𝑌)
17 eqid 2622 . . . . . . 7 (dist‘𝑈) = (dist‘𝑈)
1816, 17ressds 16073 . . . . . 6 (𝑌 ∈ (LSubSp‘𝑈) → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
198, 18syl 17 . . . . 5 (𝜑 → (dist‘𝑈) = (dist‘(𝑈s 𝑌)))
2016, 9ressbas2 15931 . . . . . . 7 (𝑌𝑋𝑌 = (Base‘(𝑈s 𝑌)))
2112, 20syl 17 . . . . . 6 (𝜑𝑌 = (Base‘(𝑈s 𝑌)))
2221sqxpeqd 5141 . . . . 5 (𝜑 → (𝑌 × 𝑌) = ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌))))
2319, 22reseq12d 5397 . . . 4 (𝜑 → ((dist‘𝑈) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2415, 23eqtrd 2656 . . 3 (𝜑 → (((dist‘𝑈) ↾ (𝑋 × 𝑋)) ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
257, 24syl5eq 2668 . 2 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) = ((dist‘(𝑈s 𝑌)) ↾ ((Base‘(𝑈s 𝑌)) × (Base‘(𝑈s 𝑌)))))
2621fveq2d 6195 . 2 (𝜑 → (CMet‘𝑌) = (CMet‘(Base‘(𝑈s 𝑌))))
275, 25, 263eltr4d 2716 1 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wss 3574  cmpt 4729   × cxp 5112  ran crn 5115  cres 5116  cfv 5888  (class class class)co 6650  infcinf 8347  cr 9935   < clt 10074  Basecbs 15857  s cress 15858  distcds 15950  TopOpenctopn 16082  -gcsg 17424  LSubSpclss 18932  normcnm 22381  ℂPreHilccph 22966  CMetcms 23052  CMetSpccms 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-ds 15964  df-lss 18933  df-cms 23132
This theorem is referenced by:  minveclem3  23200  minveclem4a  23201
  Copyright terms: Public domain W3C validator