MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodconglem Structured version   Visualization version   GIF version

Theorem mndodconglem 17960
Description: Lemma for mndodcong 17961. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
mndodconglem.1 (𝜑𝐺 ∈ Mnd)
mndodconglem.2 (𝜑𝐴𝑋)
mndodconglem.3 (𝜑 → (𝑂𝐴) ∈ ℕ)
mndodconglem.4 (𝜑𝑀 ∈ ℕ0)
mndodconglem.5 (𝜑𝑁 ∈ ℕ0)
mndodconglem.6 (𝜑𝑀 < (𝑂𝐴))
mndodconglem.7 (𝜑𝑁 < (𝑂𝐴))
mndodconglem.8 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
Assertion
Ref Expression
mndodconglem ((𝜑𝑀𝑁) → 𝑀 = 𝑁)

Proof of Theorem mndodconglem
StepHypRef Expression
1 mndodconglem.2 . . . . . . 7 (𝜑𝐴𝑋)
2 mndodconglem.3 . . . . . . . . . . 11 (𝜑 → (𝑂𝐴) ∈ ℕ)
32nnred 11035 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ∈ ℝ)
43recnd 10068 . . . . . . . . 9 (𝜑 → (𝑂𝐴) ∈ ℂ)
5 mndodconglem.4 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
65nn0red 11352 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
76recnd 10068 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
8 mndodconglem.5 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
98nn0red 11352 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
109recnd 10068 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
114, 7, 10addsubassd 10412 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) = ((𝑂𝐴) + (𝑀𝑁)))
122nnzd 11481 . . . . . . . . . . . 12 (𝜑 → (𝑂𝐴) ∈ ℤ)
135nn0zd 11480 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1412, 13zaddcld 11486 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℤ)
1514zred 11482 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) + 𝑀) ∈ ℝ)
16 mndodconglem.7 . . . . . . . . . 10 (𝜑𝑁 < (𝑂𝐴))
17 nn0addge1 11339 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
183, 5, 17syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + 𝑀))
199, 3, 15, 16, 18ltletrd 10197 . . . . . . . . 9 (𝜑𝑁 < ((𝑂𝐴) + 𝑀))
208nn0zd 11480 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
21 znnsub 11423 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑂𝐴) + 𝑀) ∈ ℤ) → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2220, 14, 21syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑁 < ((𝑂𝐴) + 𝑀) ↔ (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ))
2319, 22mpbid 222 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + 𝑀) − 𝑁) ∈ ℕ)
2411, 23eqeltrrd 2702 . . . . . . 7 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ)
254, 7, 10addsub12d 10415 . . . . . . . . 9 (𝜑 → ((𝑂𝐴) + (𝑀𝑁)) = (𝑀 + ((𝑂𝐴) − 𝑁)))
2625oveq1d 6665 . . . . . . . 8 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴))
27 mndodconglem.8 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2827oveq1d 6665 . . . . . . . . . 10 (𝜑 → ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
29 mndodconglem.1 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
30 znnsub 11423 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3120, 12, 30syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → (𝑁 < (𝑂𝐴) ↔ ((𝑂𝐴) − 𝑁) ∈ ℕ))
3216, 31mpbid 222 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ)
3332nnnn0d 11351 . . . . . . . . . . 11 (𝜑 → ((𝑂𝐴) − 𝑁) ∈ ℕ0)
34 odcl.1 . . . . . . . . . . . 12 𝑋 = (Base‘𝐺)
35 odid.3 . . . . . . . . . . . 12 · = (.g𝐺)
36 eqid 2622 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
3734, 35, 36mulgnn0dir 17571 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3829, 5, 33, 1, 37syl13anc 1328 . . . . . . . . . 10 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑀 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
3934, 35, 36mulgnn0dir 17571 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ0 ∧ ((𝑂𝐴) − 𝑁) ∈ ℕ0𝐴𝑋)) → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4029, 8, 33, 1, 39syl13anc 1328 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 · 𝐴)(+g𝐺)(((𝑂𝐴) − 𝑁) · 𝐴)))
4128, 38, 403eqtr4d 2666 . . . . . . . . 9 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴))
4210, 4pncan3d 10395 . . . . . . . . . . 11 (𝜑 → (𝑁 + ((𝑂𝐴) − 𝑁)) = (𝑂𝐴))
4342oveq1d 6665 . . . . . . . . . 10 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = ((𝑂𝐴) · 𝐴))
44 odcl.2 . . . . . . . . . . . 12 𝑂 = (od‘𝐺)
45 odid.4 . . . . . . . . . . . 12 0 = (0g𝐺)
4634, 44, 35, 45odid 17957 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = 0 )
471, 46syl 17 . . . . . . . . . 10 (𝜑 → ((𝑂𝐴) · 𝐴) = 0 )
4843, 47eqtrd 2656 . . . . . . . . 9 (𝜑 → ((𝑁 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
4941, 48eqtrd 2656 . . . . . . . 8 (𝜑 → ((𝑀 + ((𝑂𝐴) − 𝑁)) · 𝐴) = 0 )
5026, 49eqtrd 2656 . . . . . . 7 (𝜑 → (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 )
5134, 44, 35, 45odlem2 17958 . . . . . . 7 ((𝐴𝑋 ∧ ((𝑂𝐴) + (𝑀𝑁)) ∈ ℕ ∧ (((𝑂𝐴) + (𝑀𝑁)) · 𝐴) = 0 ) → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
521, 24, 50, 51syl3anc 1326 . . . . . 6 (𝜑 → (𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))))
53 elfzle2 12345 . . . . . 6 ((𝑂𝐴) ∈ (1...((𝑂𝐴) + (𝑀𝑁))) → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5452, 53syl 17 . . . . 5 (𝜑 → (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁)))
5513, 20zsubcld 11487 . . . . . . 7 (𝜑 → (𝑀𝑁) ∈ ℤ)
5655zred 11482 . . . . . 6 (𝜑 → (𝑀𝑁) ∈ ℝ)
573, 56addge01d 10615 . . . . 5 (𝜑 → (0 ≤ (𝑀𝑁) ↔ (𝑂𝐴) ≤ ((𝑂𝐴) + (𝑀𝑁))))
5854, 57mpbird 247 . . . 4 (𝜑 → 0 ≤ (𝑀𝑁))
596, 9subge0d 10617 . . . 4 (𝜑 → (0 ≤ (𝑀𝑁) ↔ 𝑁𝑀))
6058, 59mpbid 222 . . 3 (𝜑𝑁𝑀)
616, 9letri3d 10179 . . . 4 (𝜑 → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
6261biimprd 238 . . 3 (𝜑 → ((𝑀𝑁𝑁𝑀) → 𝑀 = 𝑁))
6360, 62mpan2d 710 . 2 (𝜑 → (𝑀𝑁𝑀 = 𝑁))
6463imp 445 1 ((𝜑𝑀𝑁) → 𝑀 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294  .gcmg 17540  odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-od 17948
This theorem is referenced by:  mndodcong  17961
  Copyright terms: Public domain W3C validator