MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodconglem Structured version   Visualization version   Unicode version

Theorem mndodconglem 17960
Description: Lemma for mndodcong 17961. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
mndodconglem.1  |-  ( ph  ->  G  e.  Mnd )
mndodconglem.2  |-  ( ph  ->  A  e.  X )
mndodconglem.3  |-  ( ph  ->  ( O `  A
)  e.  NN )
mndodconglem.4  |-  ( ph  ->  M  e.  NN0 )
mndodconglem.5  |-  ( ph  ->  N  e.  NN0 )
mndodconglem.6  |-  ( ph  ->  M  <  ( O `
 A ) )
mndodconglem.7  |-  ( ph  ->  N  <  ( O `
 A ) )
mndodconglem.8  |-  ( ph  ->  ( M  .x.  A
)  =  ( N 
.x.  A ) )
Assertion
Ref Expression
mndodconglem  |-  ( (
ph  /\  M  <_  N )  ->  M  =  N )

Proof of Theorem mndodconglem
StepHypRef Expression
1 mndodconglem.2 . . . . . . 7  |-  ( ph  ->  A  e.  X )
2 mndodconglem.3 . . . . . . . . . . 11  |-  ( ph  ->  ( O `  A
)  e.  NN )
32nnred 11035 . . . . . . . . . 10  |-  ( ph  ->  ( O `  A
)  e.  RR )
43recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( O `  A
)  e.  CC )
5 mndodconglem.4 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN0 )
65nn0red 11352 . . . . . . . . . 10  |-  ( ph  ->  M  e.  RR )
76recnd 10068 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
8 mndodconglem.5 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
98nn0red 11352 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR )
109recnd 10068 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
114, 7, 10addsubassd 10412 . . . . . . . 8  |-  ( ph  ->  ( ( ( O `
 A )  +  M )  -  N
)  =  ( ( O `  A )  +  ( M  -  N ) ) )
122nnzd 11481 . . . . . . . . . . . 12  |-  ( ph  ->  ( O `  A
)  e.  ZZ )
135nn0zd 11480 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
1412, 13zaddcld 11486 . . . . . . . . . . 11  |-  ( ph  ->  ( ( O `  A )  +  M
)  e.  ZZ )
1514zred 11482 . . . . . . . . . 10  |-  ( ph  ->  ( ( O `  A )  +  M
)  e.  RR )
16 mndodconglem.7 . . . . . . . . . 10  |-  ( ph  ->  N  <  ( O `
 A ) )
17 nn0addge1 11339 . . . . . . . . . . 11  |-  ( ( ( O `  A
)  e.  RR  /\  M  e.  NN0 )  -> 
( O `  A
)  <_  ( ( O `  A )  +  M ) )
183, 5, 17syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( O `  A
)  <_  ( ( O `  A )  +  M ) )
199, 3, 15, 16, 18ltletrd 10197 . . . . . . . . 9  |-  ( ph  ->  N  <  ( ( O `  A )  +  M ) )
208nn0zd 11480 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
21 znnsub 11423 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( O `  A )  +  M
)  e.  ZZ )  ->  ( N  < 
( ( O `  A )  +  M
)  <->  ( ( ( O `  A )  +  M )  -  N )  e.  NN ) )
2220, 14, 21syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( N  <  (
( O `  A
)  +  M )  <-> 
( ( ( O `
 A )  +  M )  -  N
)  e.  NN ) )
2319, 22mpbid 222 . . . . . . . 8  |-  ( ph  ->  ( ( ( O `
 A )  +  M )  -  N
)  e.  NN )
2411, 23eqeltrrd 2702 . . . . . . 7  |-  ( ph  ->  ( ( O `  A )  +  ( M  -  N ) )  e.  NN )
254, 7, 10addsub12d 10415 . . . . . . . . 9  |-  ( ph  ->  ( ( O `  A )  +  ( M  -  N ) )  =  ( M  +  ( ( O `
 A )  -  N ) ) )
2625oveq1d 6665 . . . . . . . 8  |-  ( ph  ->  ( ( ( O `
 A )  +  ( M  -  N
) )  .x.  A
)  =  ( ( M  +  ( ( O `  A )  -  N ) ) 
.x.  A ) )
27 mndodconglem.8 . . . . . . . . . . 11  |-  ( ph  ->  ( M  .x.  A
)  =  ( N 
.x.  A ) )
2827oveq1d 6665 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  .x.  A ) ( +g  `  G ) ( ( ( O `  A
)  -  N ) 
.x.  A ) )  =  ( ( N 
.x.  A ) ( +g  `  G ) ( ( ( O `
 A )  -  N )  .x.  A
) ) )
29 mndodconglem.1 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Mnd )
30 znnsub 11423 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  ( O `  A )  e.  ZZ )  -> 
( N  <  ( O `  A )  <->  ( ( O `  A
)  -  N )  e.  NN ) )
3120, 12, 30syl2anc 693 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  <  ( O `  A )  <->  ( ( O `  A
)  -  N )  e.  NN ) )
3216, 31mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( O `  A )  -  N
)  e.  NN )
3332nnnn0d 11351 . . . . . . . . . . 11  |-  ( ph  ->  ( ( O `  A )  -  N
)  e.  NN0 )
34 odcl.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
35 odid.3 . . . . . . . . . . . 12  |-  .x.  =  (.g
`  G )
36 eqid 2622 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
3734, 35, 36mulgnn0dir 17571 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  ( ( O `  A )  -  N
)  e.  NN0  /\  A  e.  X )
)  ->  ( ( M  +  ( ( O `  A )  -  N ) )  .x.  A )  =  ( ( M  .x.  A
) ( +g  `  G
) ( ( ( O `  A )  -  N )  .x.  A ) ) )
3829, 5, 33, 1, 37syl13anc 1328 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  +  ( ( O `  A )  -  N
) )  .x.  A
)  =  ( ( M  .x.  A ) ( +g  `  G
) ( ( ( O `  A )  -  N )  .x.  A ) ) )
3934, 35, 36mulgnn0dir 17571 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( N  e.  NN0  /\  ( ( O `  A )  -  N
)  e.  NN0  /\  A  e.  X )
)  ->  ( ( N  +  ( ( O `  A )  -  N ) )  .x.  A )  =  ( ( N  .x.  A
) ( +g  `  G
) ( ( ( O `  A )  -  N )  .x.  A ) ) )
4029, 8, 33, 1, 39syl13anc 1328 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  +  ( ( O `  A )  -  N
) )  .x.  A
)  =  ( ( N  .x.  A ) ( +g  `  G
) ( ( ( O `  A )  -  N )  .x.  A ) ) )
4128, 38, 403eqtr4d 2666 . . . . . . . . 9  |-  ( ph  ->  ( ( M  +  ( ( O `  A )  -  N
) )  .x.  A
)  =  ( ( N  +  ( ( O `  A )  -  N ) ) 
.x.  A ) )
4210, 4pncan3d 10395 . . . . . . . . . . 11  |-  ( ph  ->  ( N  +  ( ( O `  A
)  -  N ) )  =  ( O `
 A ) )
4342oveq1d 6665 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  +  ( ( O `  A )  -  N
) )  .x.  A
)  =  ( ( O `  A ) 
.x.  A ) )
44 odcl.2 . . . . . . . . . . . 12  |-  O  =  ( od `  G
)
45 odid.4 . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  G )
4634, 44, 35, 45odid 17957 . . . . . . . . . . 11  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  .0.  )
471, 46syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( O `  A )  .x.  A
)  =  .0.  )
4843, 47eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( N  +  ( ( O `  A )  -  N
) )  .x.  A
)  =  .0.  )
4941, 48eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( M  +  ( ( O `  A )  -  N
) )  .x.  A
)  =  .0.  )
5026, 49eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( O `
 A )  +  ( M  -  N
) )  .x.  A
)  =  .0.  )
5134, 44, 35, 45odlem2 17958 . . . . . . 7  |-  ( ( A  e.  X  /\  ( ( O `  A )  +  ( M  -  N ) )  e.  NN  /\  ( ( ( O `
 A )  +  ( M  -  N
) )  .x.  A
)  =  .0.  )  ->  ( O `  A
)  e.  ( 1 ... ( ( O `
 A )  +  ( M  -  N
) ) ) )
521, 24, 50, 51syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( O `  A
)  e.  ( 1 ... ( ( O `
 A )  +  ( M  -  N
) ) ) )
53 elfzle2 12345 . . . . . 6  |-  ( ( O `  A )  e.  ( 1 ... ( ( O `  A )  +  ( M  -  N ) ) )  ->  ( O `  A )  <_  ( ( O `  A )  +  ( M  -  N ) ) )
5452, 53syl 17 . . . . 5  |-  ( ph  ->  ( O `  A
)  <_  ( ( O `  A )  +  ( M  -  N ) ) )
5513, 20zsubcld 11487 . . . . . . 7  |-  ( ph  ->  ( M  -  N
)  e.  ZZ )
5655zred 11482 . . . . . 6  |-  ( ph  ->  ( M  -  N
)  e.  RR )
573, 56addge01d 10615 . . . . 5  |-  ( ph  ->  ( 0  <_  ( M  -  N )  <->  ( O `  A )  <_  ( ( O `
 A )  +  ( M  -  N
) ) ) )
5854, 57mpbird 247 . . . 4  |-  ( ph  ->  0  <_  ( M  -  N ) )
596, 9subge0d 10617 . . . 4  |-  ( ph  ->  ( 0  <_  ( M  -  N )  <->  N  <_  M ) )
6058, 59mpbid 222 . . 3  |-  ( ph  ->  N  <_  M )
616, 9letri3d 10179 . . . 4  |-  ( ph  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
6261biimprd 238 . . 3  |-  ( ph  ->  ( ( M  <_  N  /\  N  <_  M
)  ->  M  =  N ) )
6360, 62mpan2d 710 . 2  |-  ( ph  ->  ( M  <_  N  ->  M  =  N ) )
6463imp 445 1  |-  ( (
ph  /\  M  <_  N )  ->  M  =  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294  .gcmg 17540   odcod 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mulg 17541  df-od 17948
This theorem is referenced by:  mndodcong  17961
  Copyright terms: Public domain W3C validator