MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubassd Structured version   Visualization version   GIF version

Theorem addsubassd 10412
Description: Associative-type law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
addsubassd (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))

Proof of Theorem addsubassd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 addsubass 10291 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
51, 2, 3, 4syl3anc 1326 1 (𝜑 → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  (class class class)co 6650  cc 9934   + caddc 9939  cmin 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268
This theorem is referenced by:  mulsubdivbinom2  13046  hashun3  13173  swrdccatin2  13487  incexclem  14568  bpoly4  14790  gsumccat  17378  mndodconglem  17960  efgredleme  18156  ovollb2lem  23256  ovolunlem1  23265  ply1divex  23896  tangtx  24257  tanarg  24365  affineequiv  24553  chordthmlem4  24562  heron  24565  dquartlem2  24579  quart  24588  atanlogsublem  24642  chtublem  24936  bposlem9  25017  2lgslem3b  25122  2lgslem3c  25123  2lgslem3d  25124  dchrisum0re  25202  mulog2sumlem1  25223  selberglem2  25235  selberg4  25250  selbergr  25257  selberg3r  25258  selberg34r  25260  brbtwn2  25785  ax5seglem2  25809  wwlksnextwrd  26792  wwlksnextinj  26794  ex-ind-dvds  27318  lt2addrd  29516  archirngz  29743  fibp1  30463  dnibndlem10  32477  bj-bary1lem  33160  acongeq  37550  jm3.1lem2  37585  inductionexd  38453  fzisoeu  39514  sumnnodd  39862  stoweidlem26  40243  wallispilem4  40285  wallispi2lem1  40288  wallispi2lem2  40289  fourierdlem26  40350  fourierdlem41  40365  fourierdlem42  40366  fourierdlem48  40371  fourierdlem63  40386  fourierdlem107  40430  smfmullem1  40998  fmtnorec2lem  41454  fmtnorec3  41460  lighneallem3  41524  bgoldbtbndlem2  41694  m1modmmod  42316  assraddsubd  42517
  Copyright terms: Public domain W3C validator