Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mod42tp1mod8 Structured version   Visualization version   GIF version

Theorem mod42tp1mod8 41519
Description: If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.)
Assertion
Ref Expression
mod42tp1mod8 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)

Proof of Theorem mod42tp1mod8
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 4nn 11187 . . . . 5 4 ∈ ℕ
21a1i 11 . . . 4 (𝑁 ∈ ℤ → 4 ∈ ℕ)
3 3nn0 11310 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝑁 ∈ ℤ → 3 ∈ ℕ0)
5 3lt4 11197 . . . . 5 3 < 4
64, 5jctir 561 . . . 4 (𝑁 ∈ ℤ → (3 ∈ ℕ0 ∧ 3 < 4))
7 modremain 15132 . . . 4 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ ∧ (3 ∈ ℕ0 ∧ 3 < 4)) → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
82, 6, 7mpd3an23 1426 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁))
9 2cnd 11093 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 2 ∈ ℂ)
10 simpr 477 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
11 4z 11411 . . . . . . . . . . . . . 14 4 ∈ ℤ
1211a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℤ)
1310, 12zmulcld 11488 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℤ)
1413zcnd 11483 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑧 · 4) ∈ ℂ)
15 3cn 11095 . . . . . . . . . . . 12 3 ∈ ℂ
1615a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 3 ∈ ℂ)
179, 14, 16adddid 10064 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((2 · (𝑧 · 4)) + (2 · 3)))
1810zcnd 11483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℂ)
19 4cn 11098 . . . . . . . . . . . . . 14 4 ∈ ℂ
2019a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 4 ∈ ℂ)
219, 18, 20mul12d 10245 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · (2 · 4)))
22 2cn 11091 . . . . . . . . . . . . . 14 2 ∈ ℂ
23 4t2e8 11181 . . . . . . . . . . . . . 14 (4 · 2) = 8
2419, 22, 23mulcomli 10047 . . . . . . . . . . . . 13 (2 · 4) = 8
2524oveq2i 6661 . . . . . . . . . . . 12 (𝑧 · (2 · 4)) = (𝑧 · 8)
2621, 25syl6eq 2672 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · (𝑧 · 4)) = (𝑧 · 8))
27 3t2e6 11179 . . . . . . . . . . . . 13 (3 · 2) = 6
2815, 22, 27mulcomli 10047 . . . . . . . . . . . 12 (2 · 3) = 6
2928a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · 3) = 6)
3026, 29oveq12d 6668 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · (𝑧 · 4)) + (2 · 3)) = ((𝑧 · 8) + 6))
3117, 30eqtrd 2656 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 · ((𝑧 · 4) + 3)) = ((𝑧 · 8) + 6))
3231oveq1d 6665 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = (((𝑧 · 8) + 6) + 1))
33 id 22 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 𝑧 ∈ ℤ)
34 8nn 11191 . . . . . . . . . . . . . . 15 8 ∈ ℕ
3534nnzi 11401 . . . . . . . . . . . . . 14 8 ∈ ℤ
3635a1i 11 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 8 ∈ ℤ)
3733, 36zmulcld 11488 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℤ)
3837zcnd 11483 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧 · 8) ∈ ℂ)
39 6cn 11102 . . . . . . . . . . . 12 6 ∈ ℂ
4039a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 6 ∈ ℂ)
41 1cnd 10056 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 1 ∈ ℂ)
4238, 40, 41addassd 10062 . . . . . . . . . 10 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + (6 + 1)))
43 6p1e7 11156 . . . . . . . . . . . 12 (6 + 1) = 7
4443a1i 11 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (6 + 1) = 7)
4544oveq2d 6666 . . . . . . . . . 10 (𝑧 ∈ ℤ → ((𝑧 · 8) + (6 + 1)) = ((𝑧 · 8) + 7))
4642, 45eqtrd 2656 . . . . . . . . 9 (𝑧 ∈ ℤ → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4746adantl 482 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 6) + 1) = ((𝑧 · 8) + 7))
4832, 47eqtrd 2656 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((2 · ((𝑧 · 4) + 3)) + 1) = ((𝑧 · 8) + 7))
4948oveq1d 6665 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((𝑧 · 8) + 7) mod 8))
50 nnrp 11842 . . . . . . . . 9 (8 ∈ ℕ → 8 ∈ ℝ+)
5134, 50mp1i 13 . . . . . . . 8 (𝑧 ∈ ℤ → 8 ∈ ℝ+)
52 0xr 10086 . . . . . . . . . 10 0 ∈ ℝ*
5352a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ∈ ℝ*)
54 8re 11105 . . . . . . . . . . 11 8 ∈ ℝ
5554rexri 10097 . . . . . . . . . 10 8 ∈ ℝ*
5655a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 8 ∈ ℝ*)
57 7re 11103 . . . . . . . . . . 11 7 ∈ ℝ
5857rexri 10097 . . . . . . . . . 10 7 ∈ ℝ*
5958a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 ∈ ℝ*)
60 0re 10040 . . . . . . . . . . 11 0 ∈ ℝ
61 7pos 11120 . . . . . . . . . . 11 0 < 7
6260, 57, 61ltleii 10160 . . . . . . . . . 10 0 ≤ 7
6362a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 0 ≤ 7)
64 7lt8 11215 . . . . . . . . . 10 7 < 8
6564a1i 11 . . . . . . . . 9 (𝑧 ∈ ℤ → 7 < 8)
6653, 56, 59, 63, 65elicod 12224 . . . . . . . 8 (𝑧 ∈ ℤ → 7 ∈ (0[,)8))
67 muladdmodid 12710 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 8 ∈ ℝ+ ∧ 7 ∈ (0[,)8)) → (((𝑧 · 8) + 7) mod 8) = 7)
6851, 66, 67mpd3an23 1426 . . . . . . 7 (𝑧 ∈ ℤ → (((𝑧 · 8) + 7) mod 8) = 7)
6968adantl 482 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 8) + 7) mod 8) = 7)
7049, 69eqtrd 2656 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7)
71 oveq2 6658 . . . . . . . 8 (((𝑧 · 4) + 3) = 𝑁 → (2 · ((𝑧 · 4) + 3)) = (2 · 𝑁))
7271oveq1d 6665 . . . . . . 7 (((𝑧 · 4) + 3) = 𝑁 → ((2 · ((𝑧 · 4) + 3)) + 1) = ((2 · 𝑁) + 1))
7372oveq1d 6665 . . . . . 6 (((𝑧 · 4) + 3) = 𝑁 → (((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = (((2 · 𝑁) + 1) mod 8))
7473eqeq1d 2624 . . . . 5 (((𝑧 · 4) + 3) = 𝑁 → ((((2 · ((𝑧 · 4) + 3)) + 1) mod 8) = 7 ↔ (((2 · 𝑁) + 1) mod 8) = 7))
7570, 74syl5ibcom 235 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
7675rexlimdva 3031 . . 3 (𝑁 ∈ ℤ → (∃𝑧 ∈ ℤ ((𝑧 · 4) + 3) = 𝑁 → (((2 · 𝑁) + 1) mod 8) = 7))
778, 76sylbid 230 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 4) = 3 → (((2 · 𝑁) + 1) mod 8) = 7))
7877imp 445 1 ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cn 11020  2c2 11070  3c3 11071  4c4 11072  6c6 11074  7c7 11075  8c8 11076  0cn0 11292  cz 11377  +crp 11832  [,)cico 12177   mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984
This theorem is referenced by:  sgprmdvdsmersenne  41521
  Copyright terms: Public domain W3C validator