Proof of Theorem lgsdir2lem1
| Step | Hyp | Ref
| Expression |
| 1 | | 1re 10039 |
. . . 4
⊢ 1 ∈
ℝ |
| 2 | | 8re 11105 |
. . . . 5
⊢ 8 ∈
ℝ |
| 3 | | 8pos 11121 |
. . . . 5
⊢ 0 <
8 |
| 4 | 2, 3 | elrpii 11835 |
. . . 4
⊢ 8 ∈
ℝ+ |
| 5 | | 0le1 10551 |
. . . 4
⊢ 0 ≤
1 |
| 6 | | 1lt8 11221 |
. . . 4
⊢ 1 <
8 |
| 7 | | modid 12695 |
. . . 4
⊢ (((1
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 <
8)) → (1 mod 8) = 1) |
| 8 | 1, 4, 5, 6, 7 | mp4an 709 |
. . 3
⊢ (1 mod 8)
= 1 |
| 9 | | 8cn 11106 |
. . . . . . . 8
⊢ 8 ∈
ℂ |
| 10 | 9 | mulid2i 10043 |
. . . . . . 7
⊢ (1
· 8) = 8 |
| 11 | 10 | oveq2i 6661 |
. . . . . 6
⊢ (-1 + (1
· 8)) = (-1 + 8) |
| 12 | | ax-1cn 9994 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 13 | 12 | negcli 10349 |
. . . . . . 7
⊢ -1 ∈
ℂ |
| 14 | 9, 12 | negsubi 10359 |
. . . . . . . 8
⊢ (8 + -1)
= (8 − 1) |
| 15 | | 7cn 11104 |
. . . . . . . . 9
⊢ 7 ∈
ℂ |
| 16 | 12, 15 | addcomi 10227 |
. . . . . . . . . 10
⊢ (1 + 7) =
(7 + 1) |
| 17 | | df-8 11085 |
. . . . . . . . . 10
⊢ 8 = (7 +
1) |
| 18 | 16, 17 | eqtr4i 2647 |
. . . . . . . . 9
⊢ (1 + 7) =
8 |
| 19 | 9, 12, 15, 18 | subaddrii 10370 |
. . . . . . . 8
⊢ (8
− 1) = 7 |
| 20 | 14, 19 | eqtri 2644 |
. . . . . . 7
⊢ (8 + -1)
= 7 |
| 21 | 9, 13, 20 | addcomli 10228 |
. . . . . 6
⊢ (-1 + 8)
= 7 |
| 22 | 11, 21 | eqtri 2644 |
. . . . 5
⊢ (-1 + (1
· 8)) = 7 |
| 23 | 22 | oveq1i 6660 |
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (7 mod 8) |
| 24 | 1 | renegcli 10342 |
. . . . 5
⊢ -1 ∈
ℝ |
| 25 | | 1z 11407 |
. . . . 5
⊢ 1 ∈
ℤ |
| 26 | | modcyc 12705 |
. . . . 5
⊢ ((-1
∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ)
→ ((-1 + (1 · 8)) mod 8) = (-1 mod 8)) |
| 27 | 24, 4, 25, 26 | mp3an 1424 |
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (-1 mod 8) |
| 28 | | 7re 11103 |
. . . . 5
⊢ 7 ∈
ℝ |
| 29 | | 0re 10040 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 30 | | 7pos 11120 |
. . . . . 6
⊢ 0 <
7 |
| 31 | 29, 28, 30 | ltleii 10160 |
. . . . 5
⊢ 0 ≤
7 |
| 32 | | 7lt8 11215 |
. . . . 5
⊢ 7 <
8 |
| 33 | | modid 12695 |
. . . . 5
⊢ (((7
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 7 ∧ 7 <
8)) → (7 mod 8) = 7) |
| 34 | 28, 4, 31, 32, 33 | mp4an 709 |
. . . 4
⊢ (7 mod 8)
= 7 |
| 35 | 23, 27, 34 | 3eqtr3i 2652 |
. . 3
⊢ (-1 mod
8) = 7 |
| 36 | 8, 35 | pm3.2i 471 |
. 2
⊢ ((1 mod
8) = 1 ∧ (-1 mod 8) = 7) |
| 37 | | 3re 11094 |
. . . 4
⊢ 3 ∈
ℝ |
| 38 | | 3pos 11114 |
. . . . 5
⊢ 0 <
3 |
| 39 | 29, 37, 38 | ltleii 10160 |
. . . 4
⊢ 0 ≤
3 |
| 40 | | 3lt8 11219 |
. . . 4
⊢ 3 <
8 |
| 41 | | modid 12695 |
. . . 4
⊢ (((3
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 3 ∧ 3 <
8)) → (3 mod 8) = 3) |
| 42 | 37, 4, 39, 40, 41 | mp4an 709 |
. . 3
⊢ (3 mod 8)
= 3 |
| 43 | 10 | oveq2i 6661 |
. . . . . 6
⊢ (-3 + (1
· 8)) = (-3 + 8) |
| 44 | | 3cn 11095 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
| 45 | 44 | negcli 10349 |
. . . . . . 7
⊢ -3 ∈
ℂ |
| 46 | 9, 44 | negsubi 10359 |
. . . . . . . 8
⊢ (8 + -3)
= (8 − 3) |
| 47 | | 5cn 11100 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
| 48 | | 5p3e8 11166 |
. . . . . . . . . 10
⊢ (5 + 3) =
8 |
| 49 | 47, 44, 48 | addcomli 10228 |
. . . . . . . . 9
⊢ (3 + 5) =
8 |
| 50 | 9, 44, 47, 49 | subaddrii 10370 |
. . . . . . . 8
⊢ (8
− 3) = 5 |
| 51 | 46, 50 | eqtri 2644 |
. . . . . . 7
⊢ (8 + -3)
= 5 |
| 52 | 9, 45, 51 | addcomli 10228 |
. . . . . 6
⊢ (-3 + 8)
= 5 |
| 53 | 43, 52 | eqtri 2644 |
. . . . 5
⊢ (-3 + (1
· 8)) = 5 |
| 54 | 53 | oveq1i 6660 |
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (5 mod 8) |
| 55 | 37 | renegcli 10342 |
. . . . 5
⊢ -3 ∈
ℝ |
| 56 | | modcyc 12705 |
. . . . 5
⊢ ((-3
∈ ℝ ∧ 8 ∈ ℝ+ ∧ 1 ∈ ℤ)
→ ((-3 + (1 · 8)) mod 8) = (-3 mod 8)) |
| 57 | 55, 4, 25, 56 | mp3an 1424 |
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (-3 mod 8) |
| 58 | | 5re 11099 |
. . . . 5
⊢ 5 ∈
ℝ |
| 59 | | 5pos 11118 |
. . . . . 6
⊢ 0 <
5 |
| 60 | 29, 58, 59 | ltleii 10160 |
. . . . 5
⊢ 0 ≤
5 |
| 61 | | 5lt8 11217 |
. . . . 5
⊢ 5 <
8 |
| 62 | | modid 12695 |
. . . . 5
⊢ (((5
∈ ℝ ∧ 8 ∈ ℝ+) ∧ (0 ≤ 5 ∧ 5 <
8)) → (5 mod 8) = 5) |
| 63 | 58, 4, 60, 61, 62 | mp4an 709 |
. . . 4
⊢ (5 mod 8)
= 5 |
| 64 | 54, 57, 63 | 3eqtr3i 2652 |
. . 3
⊢ (-3 mod
8) = 5 |
| 65 | 42, 64 | pm3.2i 471 |
. 2
⊢ ((3 mod
8) = 3 ∧ (-3 mod 8) = 5) |
| 66 | 36, 65 | pm3.2i 471 |
1
⊢ (((1 mod
8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) =
5)) |