MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2matmul Structured version   Visualization version   GIF version

Theorem mpt2matmul 20252
Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.)
Hypotheses
Ref Expression
mpt2matmul.a 𝐴 = (𝑁 Mat 𝑅)
mpt2matmul.b 𝐵 = (Base‘𝑅)
mpt2matmul.m × = (.r𝐴)
mpt2matmul.t · = (.r𝑅)
mpt2matmul.r (𝜑𝑅𝑉)
mpt2matmul.n (𝜑𝑁 ∈ Fin)
mpt2matmul.x 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
mpt2matmul.y 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
mpt2matmul.c ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
mpt2matmul.e ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
mpt2matmul.d ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
mpt2matmul.f ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
mpt2matmul.1 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
mpt2matmul.2 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
Assertion
Ref Expression
mpt2matmul (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑖,𝐹,𝑗   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑅,𝑖,𝑗,𝑘,𝑙,𝑚   𝑘,𝑋,𝑙,𝑚   𝑘,𝑌,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙,𝑚   · ,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐶(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐷(𝑘,𝑚,𝑙)   · (𝑖,𝑗,𝑚)   × (𝑖,𝑗,𝑘,𝑚,𝑙)   𝑈(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐸(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑘,𝑚,𝑙)   𝑉(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑊(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑋(𝑖,𝑗)   𝑌(𝑖,𝑗)

Proof of Theorem mpt2matmul
StepHypRef Expression
1 mpt2matmul.n . . 3 (𝜑𝑁 ∈ Fin)
2 mpt2matmul.r . . 3 (𝜑𝑅𝑉)
3 mpt2matmul.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2622 . . . . . . 7 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
53, 4matmulr 20244 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
6 mpt2matmul.m . . . . . 6 × = (.r𝐴)
75, 6syl6eqr 2674 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = × )
87oveqd 6667 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑋 × 𝑌))
98eqcomd 2628 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
101, 2, 9syl2anc 693 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
11 eqid 2622 . . 3 (Base‘𝑅) = (Base‘𝑅)
12 mpt2matmul.t . . 3 · = (.r𝑅)
13 mpt2matmul.x . . . . 5 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶)
14 eqid 2622 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
15 mpt2matmul.c . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶𝐵)
16 mpt2matmul.b . . . . . . 7 𝐵 = (Base‘𝑅)
1715, 16syl6eleq 2711 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐶 ∈ (Base‘𝑅))
183, 11, 14, 1, 2, 17matbas2d 20229 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐶) ∈ (Base‘𝐴))
1913, 18syl5eqel 2705 . . . 4 (𝜑𝑋 ∈ (Base‘𝐴))
203, 11matbas2 20227 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
211, 2, 20syl2anc 693 . . . 4 (𝜑 → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
2219, 21eleqtrrd 2704 . . 3 (𝜑𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
23 mpt2matmul.y . . . . 5 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸)
24 mpt2matmul.e . . . . . . 7 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸𝐵)
2524, 16syl6eleq 2711 . . . . . 6 ((𝜑𝑖𝑁𝑗𝑁) → 𝐸 ∈ (Base‘𝑅))
263, 11, 14, 1, 2, 25matbas2d 20229 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝐸) ∈ (Base‘𝐴))
2723, 26syl5eqel 2705 . . . 4 (𝜑𝑌 ∈ (Base‘𝐴))
2827, 21eleqtrrd 2704 . . 3 (𝜑𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
294, 11, 12, 2, 1, 1, 1, 22, 28mamuval 20192 . 2 (𝜑 → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))))
3013a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑋 = (𝑖𝑁, 𝑗𝑁𝐶))
31 equcom 1945 . . . . . . . . . . . . . 14 (𝑖 = 𝑘𝑘 = 𝑖)
32 equcom 1945 . . . . . . . . . . . . . 14 (𝑗 = 𝑚𝑚 = 𝑗)
3331, 32anbi12i 733 . . . . . . . . . . . . 13 ((𝑖 = 𝑘𝑗 = 𝑚) ↔ (𝑘 = 𝑖𝑚 = 𝑗))
34 mpt2matmul.d . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → 𝐷 = 𝐶)
3533, 34sylan2b 492 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐷 = 𝐶)
3635eqcomd 2628 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
3736ex 450 . . . . . . . . . 10 (𝜑 → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
38373ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
3938adantr 481 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑘𝑗 = 𝑚) → 𝐶 = 𝐷))
4039imp 445 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑚)) → 𝐶 = 𝐷)
41 simpl2 1065 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
42 simpr 477 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
43 simpl1 1064 . . . . . . . 8 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝜑)
44 mpt2matmul.1 . . . . . . . 8 ((𝜑𝑘𝑁𝑚𝑁) → 𝐷𝑈)
4543, 41, 42, 44syl3anc 1326 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐷𝑈)
4630, 40, 41, 42, 45ovmpt2d 6788 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑋𝑚) = 𝐷)
4723a1i 11 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑌 = (𝑖𝑁, 𝑗𝑁𝐸))
48 equcomi 1944 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑚 = 𝑖)
49 equcomi 1944 . . . . . . . . . . . . . 14 (𝑗 = 𝑙𝑙 = 𝑗)
5048, 49anim12i 590 . . . . . . . . . . . . 13 ((𝑖 = 𝑚𝑗 = 𝑙) → (𝑚 = 𝑖𝑙 = 𝑗))
51 mpt2matmul.f . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → 𝐹 = 𝐸)
5250, 51sylan2 491 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5352ex 450 . . . . . . . . . . 11 (𝜑 → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
54533ad2ant1 1082 . . . . . . . . . 10 ((𝜑𝑘𝑁𝑙𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5554adantr 481 . . . . . . . . 9 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑖 = 𝑚𝑗 = 𝑙) → 𝐹 = 𝐸))
5655imp 445 . . . . . . . 8 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐹 = 𝐸)
5756eqcomd 2628 . . . . . . 7 ((((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) ∧ (𝑖 = 𝑚𝑗 = 𝑙)) → 𝐸 = 𝐹)
58 simpl3 1066 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
59 mpt2matmul.2 . . . . . . . 8 ((𝜑𝑚𝑁𝑙𝑁) → 𝐹𝑊)
6043, 42, 58, 59syl3anc 1326 . . . . . . 7 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝐹𝑊)
6147, 57, 42, 58, 60ovmpt2d 6788 . . . . . 6 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑌𝑙) = 𝐹)
6246, 61oveq12d 6668 . . . . 5 (((𝜑𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)) = (𝐷 · 𝐹))
6362mpteq2dva 4744 . . . 4 ((𝜑𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))) = (𝑚𝑁 ↦ (𝐷 · 𝐹)))
6463oveq2d 6666 . . 3 ((𝜑𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙)))) = (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹))))
6564mpt2eq3dva 6719 . 2 (𝜑 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑋𝑚) · (𝑚𝑌𝑙))))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
6610, 29, 653eqtrd 2660 1 (𝜑 → (𝑋 × 𝑌) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ (𝐷 · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cotp 4185  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  .rcmulr 15942   Σg cgsu 16101   maMul cmmul 20189   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214
This theorem is referenced by:  mat2pmatmul  20536
  Copyright terms: Public domain W3C validator