MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmodid Structured version   Visualization version   GIF version

Theorem mulgmodid 17581
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b 𝐵 = (Base‘𝐺)
mulgmodid.o 0 = (0g𝐺)
mulgmodid.t · = (.g𝐺)
Assertion
Ref Expression
mulgmodid ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))

Proof of Theorem mulgmodid
StepHypRef Expression
1 zre 11381 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 nnrp 11842 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
3 modval 12670 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
41, 2, 3syl2an 494 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
543ad2ant2 1083 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
65oveq1d 6665 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
7 zcn 11382 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
87adantr 481 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnz 11399 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
109adantl 482 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
11 nnre 11027 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
12 nnne0 11053 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
13 redivcl 10744 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∈ ℝ)
141, 11, 12, 13syl3an 1368 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℝ)
15143anidm23 1385 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℝ)
1615flcld 12599 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
1710, 16zmulcld 11488 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
1817zcnd 11483 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℂ)
198, 18negsubd 10398 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
20193ad2ant2 1083 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
2120oveq1d 6665 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
22 simp1 1061 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝐺 ∈ Grp)
23 simpl 473 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℤ)
24233ad2ant2 1083 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑁 ∈ ℤ)
25103ad2ant2 1083 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑀 ∈ ℤ)
26163ad2ant2 1083 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
2725, 26zmulcld 11488 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
2827znegcld 11484 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
29 simpl 473 . . . . 5 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → 𝑋𝐵)
30293ad2ant3 1084 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑋𝐵)
31 mulgmodid.b . . . . 5 𝐵 = (Base‘𝐺)
32 mulgmodid.t . . . . 5 · = (.g𝐺)
33 eqid 2622 . . . . 5 (+g𝐺) = (+g𝐺)
3431, 32, 33mulgdir 17573 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ ∧ 𝑋𝐵)) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
3522, 24, 28, 30, 34syl13anc 1328 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
366, 21, 353eqtr2d 2662 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
37 nncn 11028 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
3837adantl 482 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
3916zcnd 11483 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℂ)
4038, 39mulneg2d 10484 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
41403ad2ant2 1083 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
4241oveq1d 6665 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))
43153ad2ant2 1083 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 / 𝑀) ∈ ℝ)
4443flcld 12599 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4544znegcld 11484 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4631, 32mulgassr 17580 . . . . . 6 ((𝐺 ∈ Grp ∧ (-(⌊‘(𝑁 / 𝑀)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
4722, 45, 25, 30, 46syl13anc 1328 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
48 oveq2 6658 . . . . . . 7 ((𝑀 · 𝑋) = 0 → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
4948adantl 482 . . . . . 6 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
50493ad2ant3 1084 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
51 mulgmodid.o . . . . . . 7 0 = (0g𝐺)
5231, 32, 51mulgz 17568 . . . . . 6 ((𝐺 ∈ Grp ∧ -(⌊‘(𝑁 / 𝑀)) ∈ ℤ) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5322, 45, 52syl2anc 693 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5447, 50, 533eqtrd 2660 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5542, 54eqtr3d 2658 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5655oveq2d 6666 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)) = ((𝑁 · 𝑋)(+g𝐺) 0 ))
57 id 22 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5831, 32mulgcl 17559 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
5957, 23, 29, 58syl3an 1368 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 · 𝑋) ∈ 𝐵)
6031, 33, 51grprid 17453 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6122, 59, 60syl2anc 693 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6236, 56, 613eqtrd 2660 1 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  cz 11377  +crp 11832  cfl 12591   mod cmo 12668  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mulg 17541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator