MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg2d Structured version   Visualization version   GIF version

Theorem mulneg2d 10484
Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1 (𝜑𝐴 ∈ ℂ)
mulnegd.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulneg2d (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg2d
StepHypRef Expression
1 mulm1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mulnegd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 mulneg2 10467 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
41, 2, 3syl2anc 693 1 (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  (class class class)co 6650  cc 9934   · cmul 9941  -cneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269
This theorem is referenced by:  prodge0  10870  expmulz  12906  discr  13001  sincossq  14906  oexpneg  15069  mulgass  17579  mulgmodid  17581  zringlpirlem3  19834  pjthlem1  23208  dvfsum2  23797  vieta1  24067  advlogexp  24401  logccv  24409  cxpmul2z  24437  abscxpbnd  24494  isosctrlem3  24550  dcubic1lem  24570  mcubic  24574  amgmlem  24716  ftalem5  24803  pntrlog2bndlem2  25267  brbtwn2  25785  colinearalglem4  25789  pjhthlem1  28250  fwddifnp1  32272  areacirclem1  33500  pellexlem6  37398  pell1234qrreccl  37418  pell14qrdich  37433  rmxyneg  37485  rmxm1  37499  ltmulneg  39615  cosknegpi  40080  itgsinexplem1  40169  dirkerper  40313  sqwvfoura  40445  etransclem46  40497  fmtnorec3  41460  oexpnegALTV  41588  oexpnegnz  41589  2zrngagrp  41943  amgmwlem  42548
  Copyright terms: Public domain W3C validator