| Step | Hyp | Ref
| Expression |
| 1 | | qssre 11798 |
. . 3
⊢ ℚ
⊆ ℝ |
| 2 | | lhop2.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 3 | | lhop2.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | 3 | rexrd 10089 |
. . . 4
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 5 | | lhop2.l |
. . . 4
⊢ (𝜑 → 𝐴 < 𝐵) |
| 6 | | qbtwnxr 12031 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ∃𝑎 ∈ ℚ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵)) |
| 7 | 2, 4, 5, 6 | syl3anc 1326 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ ℚ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵)) |
| 8 | | ssrexv 3667 |
. . 3
⊢ (ℚ
⊆ ℝ → (∃𝑎 ∈ ℚ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵) → ∃𝑎 ∈ ℝ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) |
| 9 | 1, 7, 8 | mpsyl 68 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ ℝ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵)) |
| 10 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ (𝑎(,)𝐵)) |
| 11 | | simprl 794 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝑎 ∈ ℝ) |
| 12 | 11 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑎 ∈ ℝ) |
| 13 | 3 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝐵 ∈ ℝ) |
| 14 | | elioore 12205 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑎(,)𝐵) → 𝑧 ∈ ℝ) |
| 15 | 14 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℝ) |
| 16 | | iooneg 12292 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎))) |
| 17 | 12, 13, 15, 16 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 ∈ (𝑎(,)𝐵) ↔ -𝑧 ∈ (-𝐵(,)-𝑎))) |
| 18 | 10, 17 | mpbid 222 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎)) |
| 19 | 18 | adantrr 753 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 ≠ -𝐵)) → -𝑧 ∈ (-𝐵(,)-𝑎)) |
| 20 | | lhop2.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 21 | 20 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 22 | | elioore 12205 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) → 𝑥 ∈ ℝ) |
| 23 | 22 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℝ) |
| 24 | 23 | recnd 10068 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ ℂ) |
| 25 | 24 | negnegd 10383 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 = 𝑥) |
| 26 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑥 ∈ (-𝐵(,)-𝑎)) |
| 27 | 25, 26 | eqeltrd 2701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → --𝑥 ∈ (-𝐵(,)-𝑎)) |
| 28 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝑎 ∈ ℝ) |
| 29 | 3 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐵 ∈ ℝ) |
| 30 | 23 | renegcld 10457 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ ℝ) |
| 31 | | iooneg 12292 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -𝑥 ∈ ℝ) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎))) |
| 32 | 28, 29, 30, 31 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 ∈ (𝑎(,)𝐵) ↔ --𝑥 ∈ (-𝐵(,)-𝑎))) |
| 33 | 27, 32 | mpbird 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝑎(,)𝐵)) |
| 34 | 2 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐴 ∈
ℝ*) |
| 35 | | simprrl 804 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐴 < 𝑎) |
| 36 | 11 | rexrd 10089 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝑎 ∈ ℝ*) |
| 37 | | xrltle 11982 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ 𝑎 ∈
ℝ*) → (𝐴 < 𝑎 → 𝐴 ≤ 𝑎)) |
| 38 | 34, 36, 37 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐴 < 𝑎 → 𝐴 ≤ 𝑎)) |
| 39 | 35, 38 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐴 ≤ 𝑎) |
| 40 | | iooss1 12210 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≤ 𝑎) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵)) |
| 41 | 34, 39, 40 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑎(,)𝐵) ⊆ (𝐴(,)𝐵)) |
| 42 | 41 | sselda 3603 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ -𝑥 ∈ (𝑎(,)𝐵)) → -𝑥 ∈ (𝐴(,)𝐵)) |
| 43 | 33, 42 | syldan 487 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ∈ (𝐴(,)𝐵)) |
| 44 | 21, 43 | ffvelrnd 6360 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℝ) |
| 45 | 44 | recnd 10068 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐹‘-𝑥) ∈ ℂ) |
| 46 | | lhop2.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
| 47 | 46 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
| 48 | 47, 43 | ffvelrnd 6360 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℝ) |
| 49 | 48 | recnd 10068 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ℂ) |
| 50 | | lhop2.gn0 |
. . . . . . 7
⊢ (𝜑 → ¬ 0 ∈ ran 𝐺) |
| 51 | 50 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran 𝐺) |
| 52 | 46 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℝ) |
| 53 | | ax-resscn 9993 |
. . . . . . . . . . . 12
⊢ ℝ
⊆ ℂ |
| 54 | | fss 6056 |
. . . . . . . . . . . 12
⊢ ((𝐺:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
| 55 | 52, 53, 54 | sylancl 694 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
| 56 | 55 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺:(𝐴(,)𝐵)⟶ℂ) |
| 57 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝐺:(𝐴(,)𝐵)⟶ℂ → 𝐺 Fn (𝐴(,)𝐵)) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 𝐺 Fn (𝐴(,)𝐵)) |
| 59 | | fnfvelrn 6356 |
. . . . . . . . 9
⊢ ((𝐺 Fn (𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘-𝑥) ∈ ran 𝐺) |
| 60 | 58, 43, 59 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ∈ ran 𝐺) |
| 61 | | eleq1 2689 |
. . . . . . . 8
⊢ ((𝐺‘-𝑥) = 0 → ((𝐺‘-𝑥) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺)) |
| 62 | 60, 61 | syl5ibcom 235 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐺‘-𝑥) = 0 → 0 ∈ ran 𝐺)) |
| 63 | 62 | necon3bd 2808 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran 𝐺 → (𝐺‘-𝑥) ≠ 0)) |
| 64 | 51, 63 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (𝐺‘-𝑥) ≠ 0) |
| 65 | 45, 49, 64 | divcld 10801 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) ∈ ℂ) |
| 66 | | limcresi 23649 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ↦ -𝑧) limℂ 𝐵) ⊆ (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) limℂ 𝐵) |
| 67 | | ioossre 12235 |
. . . . . . . 8
⊢ (𝑎(,)𝐵) ⊆ ℝ |
| 68 | | resmpt 5449 |
. . . . . . . 8
⊢ ((𝑎(,)𝐵) ⊆ ℝ → ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧)) |
| 69 | 67, 68 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) |
| 70 | 69 | oveq1i 6660 |
. . . . . 6
⊢ (((𝑧 ∈ ℝ ↦ -𝑧) ↾ (𝑎(,)𝐵)) limℂ 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) limℂ 𝐵) |
| 71 | 66, 70 | sseqtri 3637 |
. . . . 5
⊢ ((𝑧 ∈ ℝ ↦ -𝑧) limℂ 𝐵) ⊆ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) limℂ 𝐵) |
| 72 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ ↦ -𝑧) = (𝑧 ∈ ℝ ↦ -𝑧) |
| 73 | 72 | negcncf 22721 |
. . . . . . 7
⊢ (ℝ
⊆ ℂ → (𝑧
∈ ℝ ↦ -𝑧)
∈ (ℝ–cn→ℂ)) |
| 74 | 53, 73 | mp1i 13 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑧 ∈ ℝ ↦ -𝑧) ∈ (ℝ–cn→ℂ)) |
| 75 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈ ℝ) |
| 76 | | negeq 10273 |
. . . . . 6
⊢ (𝑧 = 𝐵 → -𝑧 = -𝐵) |
| 77 | 74, 75, 76 | cnmptlimc 23654 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ ℝ ↦ -𝑧) limℂ 𝐵)) |
| 78 | 71, 77 | sseldi 3601 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → -𝐵 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ -𝑧) limℂ 𝐵)) |
| 79 | 75 | renegcld 10457 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → -𝐵 ∈ ℝ) |
| 80 | 11 | renegcld 10457 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → -𝑎 ∈ ℝ) |
| 81 | 80 | rexrd 10089 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → -𝑎 ∈ ℝ*) |
| 82 | | simprrr 805 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝑎 < 𝐵) |
| 83 | 11, 75 | ltnegd 10605 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑎 < 𝐵 ↔ -𝐵 < -𝑎)) |
| 84 | 82, 83 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → -𝐵 < -𝑎) |
| 85 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) |
| 86 | 44, 85 | fmptd 6385 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ) |
| 87 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) |
| 88 | 48, 87 | fmptd 6385 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ℝ) |
| 89 | | reelprrecn 10028 |
. . . . . . . . . . 11
⊢ ℝ
∈ {ℝ, ℂ} |
| 90 | 89 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ℝ ∈ {ℝ,
ℂ}) |
| 91 | | neg1cn 11124 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
| 92 | 91 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -1 ∈ ℂ) |
| 93 | 20 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 94 | 93 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) ∈ ℝ) |
| 95 | 94 | recnd 10068 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) ∈ ℂ) |
| 96 | | fvexd 6203 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) ∈ V) |
| 97 | | 1cnd 10056 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → 1 ∈ ℂ) |
| 98 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 99 | 98 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 100 | | 1cnd 10056 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ ℝ) → 1 ∈
ℂ) |
| 101 | 90 | dvmptid 23720 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1)) |
| 102 | | ioossre 12235 |
. . . . . . . . . . . . 13
⊢ (-𝐵(,)-𝑎) ⊆ ℝ |
| 103 | 102 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ⊆ ℝ) |
| 104 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 105 | 104 | tgioo2 22606 |
. . . . . . . . . . . 12
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 106 | | iooretop 22569 |
. . . . . . . . . . . . 13
⊢ (-𝐵(,)-𝑎) ∈ (topGen‘ran
(,)) |
| 107 | 106 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (-𝐵(,)-𝑎) ∈ (topGen‘ran
(,))) |
| 108 | 90, 99, 100, 101, 103, 105, 104, 107 | dvmptres 23726 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ 1)) |
| 109 | 90, 24, 97, 108 | dvmptneg 23729 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -1)) |
| 110 | 93 | feqmptd 6249 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦))) |
| 111 | 110 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D 𝐹) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦)))) |
| 112 | | dvf 23671 |
. . . . . . . . . . . . 13
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
| 113 | | lhop2.if |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 114 | 113 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 115 | 114 | feq2d 6031 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)) |
| 116 | 112, 115 | mpbii 223 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
| 117 | 116 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D 𝐹) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦))) |
| 118 | 111, 117 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑦))) |
| 119 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑥 → (𝐹‘𝑦) = (𝐹‘-𝑥)) |
| 120 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘-𝑥)) |
| 121 | 90, 90, 43, 92, 95, 96, 109, 118, 119, 120 | dvmptco 23735 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1))) |
| 122 | 116 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
| 123 | 122, 43 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐹)‘-𝑥) ∈ ℂ) |
| 124 | 123, 92 | mulcomd 10061 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = (-1 · ((ℝ D
𝐹)‘-𝑥))) |
| 125 | 123 | mulm1d 10482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐹)‘-𝑥)) = -((ℝ D 𝐹)‘-𝑥)) |
| 126 | 124, 125 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐹)‘-𝑥) · -1) = -((ℝ D 𝐹)‘-𝑥)) |
| 127 | 126 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))) |
| 128 | 121, 127 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))) |
| 129 | 128 | dmeqd 5326 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))) |
| 130 | | negex 10279 |
. . . . . . . 8
⊢
-((ℝ D 𝐹)‘-𝑥) ∈ V |
| 131 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) |
| 132 | 130, 131 | dmmpti 6023 |
. . . . . . 7
⊢ dom
(𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥)) = (-𝐵(,)-𝑎) |
| 133 | 129, 132 | syl6eq 2672 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) = (-𝐵(,)-𝑎)) |
| 134 | 52 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑦) ∈ ℝ) |
| 135 | 134 | recnd 10068 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑦) ∈ ℂ) |
| 136 | | fvexd 6203 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) ∈ V) |
| 137 | 52 | feqmptd 6249 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺‘𝑦))) |
| 138 | 137 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D 𝐺) = (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺‘𝑦)))) |
| 139 | | dvf 23671 |
. . . . . . . . . . . . 13
⊢ (ℝ
D 𝐺):dom (ℝ D 𝐺)⟶ℂ |
| 140 | | lhop2.ig |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
| 141 | 140 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
| 142 | 141 | feq2d 6031 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)) |
| 143 | 139, 142 | mpbii 223 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ) |
| 144 | 143 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D 𝐺) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦))) |
| 145 | 138, 144 | eqtr3d 2658 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺‘𝑦))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑦))) |
| 146 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑥 → (𝐺‘𝑦) = (𝐺‘-𝑥)) |
| 147 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑥 → ((ℝ D 𝐺)‘𝑦) = ((ℝ D 𝐺)‘-𝑥)) |
| 148 | 90, 90, 43, 92, 135, 136, 109, 145, 146, 147 | dvmptco 23735 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1))) |
| 149 | 143 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ) |
| 150 | 149, 43 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ℂ) |
| 151 | 150, 92 | mulcomd 10061 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = (-1 · ((ℝ D
𝐺)‘-𝑥))) |
| 152 | 150 | mulm1d 10482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-1 · ((ℝ D 𝐺)‘-𝑥)) = -((ℝ D 𝐺)‘-𝑥)) |
| 153 | 151, 152 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) · -1) = -((ℝ D 𝐺)‘-𝑥)) |
| 154 | 153 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐺)‘-𝑥) · -1)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))) |
| 155 | 148, 154 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))) |
| 156 | 155 | dmeqd 5326 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = dom (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))) |
| 157 | | negex 10279 |
. . . . . . . 8
⊢
-((ℝ D 𝐺)‘-𝑥) ∈ V |
| 158 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) |
| 159 | 157, 158 | dmmpti 6023 |
. . . . . . 7
⊢ dom
(𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) = (-𝐵(,)-𝑎) |
| 160 | 156, 159 | syl6eq 2672 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → dom (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = (-𝐵(,)-𝑎)) |
| 161 | 43 | adantrr 753 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 ≠ 𝐵)) → -𝑥 ∈ (𝐴(,)𝐵)) |
| 162 | | limcresi 23649 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ↦ -𝑥) limℂ -𝐵) ⊆ (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) limℂ -𝐵) |
| 163 | | resmpt 5449 |
. . . . . . . . . . 11
⊢ ((-𝐵(,)-𝑎) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥)) |
| 164 | 102, 163 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) |
| 165 | 164 | oveq1i 6660 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ↦ -𝑥) ↾ (-𝐵(,)-𝑎)) limℂ -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) limℂ -𝐵) |
| 166 | 162, 165 | sseqtri 3637 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ↦ -𝑥) limℂ -𝐵) ⊆ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) limℂ -𝐵) |
| 167 | 75 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈ ℂ) |
| 168 | 167 | negnegd 10383 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → --𝐵 = 𝐵) |
| 169 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦ -𝑥) = (𝑥 ∈ ℝ ↦ -𝑥) |
| 170 | 169 | negcncf 22721 |
. . . . . . . . . . 11
⊢ (ℝ
⊆ ℂ → (𝑥
∈ ℝ ↦ -𝑥)
∈ (ℝ–cn→ℂ)) |
| 171 | 53, 170 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ ℝ ↦ -𝑥) ∈ (ℝ–cn→ℂ)) |
| 172 | | negeq 10273 |
. . . . . . . . . 10
⊢ (𝑥 = -𝐵 → -𝑥 = --𝐵) |
| 173 | 171, 79, 172 | cnmptlimc 23654 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → --𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) limℂ -𝐵)) |
| 174 | 168, 173 | eqeltrrd 2702 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ ℝ ↦ -𝑥) limℂ -𝐵)) |
| 175 | 166, 174 | sseldi 3601 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -𝑥) limℂ -𝐵)) |
| 176 | | lhop2.f0 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (𝐹 limℂ 𝐵)) |
| 177 | 176 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 0 ∈ (𝐹 limℂ 𝐵)) |
| 178 | 110 | oveq1d 6665 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐹 limℂ 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦)) limℂ 𝐵)) |
| 179 | 177, 178 | eleqtrd 2703 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐹‘𝑦)) limℂ 𝐵)) |
| 180 | | eliooord 12233 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) → (-𝐵 < 𝑥 ∧ 𝑥 < -𝑎)) |
| 181 | 180 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝐵 < 𝑥 ∧ 𝑥 < -𝑎)) |
| 182 | 181 | simpld 475 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝐵 < 𝑥) |
| 183 | 29, 23, 182 | ltnegcon1d 10607 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 < 𝐵) |
| 184 | 30, 183 | ltned 10173 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → -𝑥 ≠ 𝐵) |
| 185 | 184 | neneqd 2799 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ -𝑥 = 𝐵) |
| 186 | 185 | pm2.21d 118 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐹‘-𝑥) = 0)) |
| 187 | 186 | impr 649 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐹‘-𝑥) = 0) |
| 188 | 161, 95, 175, 179, 119, 187 | limcco 23657 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) limℂ -𝐵)) |
| 189 | | lhop2.g0 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (𝐺 limℂ 𝐵)) |
| 190 | 189 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 0 ∈ (𝐺 limℂ 𝐵)) |
| 191 | 137 | oveq1d 6665 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐺 limℂ 𝐵) = ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺‘𝑦)) limℂ 𝐵)) |
| 192 | 190, 191 | eleqtrd 2703 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 0 ∈ ((𝑦 ∈ (𝐴(,)𝐵) ↦ (𝐺‘𝑦)) limℂ 𝐵)) |
| 193 | 185 | pm2.21d 118 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (𝐺‘-𝑥) = 0)) |
| 194 | 193 | impr 649 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (𝐺‘-𝑥) = 0) |
| 195 | 161, 135,
175, 192, 146, 194 | limcco 23657 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 0 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) limℂ -𝐵)) |
| 196 | 60, 87 | fmptd 6385 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺) |
| 197 | | frn 6053 |
. . . . . . . 8
⊢ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)):(-𝐵(,)-𝑎)⟶ran 𝐺 → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺) |
| 198 | 196, 197 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) ⊆ ran 𝐺) |
| 199 | 50 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ¬ 0 ∈ ran 𝐺) |
| 200 | 198, 199 | ssneldd 3606 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ¬ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) |
| 201 | | lhop2.gd0 |
. . . . . . . 8
⊢ (𝜑 → ¬ 0 ∈ ran
(ℝ D 𝐺)) |
| 202 | 201 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D
𝐺)) |
| 203 | 155 | rneqd 5353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) = ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))) |
| 204 | 203 | eleq2d 2687 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) ↔ 0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)))) |
| 205 | 158, 157 | elrnmpti 5376 |
. . . . . . . . 9
⊢ (0 ∈
ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) ↔ ∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥)) |
| 206 | | eqcom 2629 |
. . . . . . . . . . 11
⊢ (0 =
-((ℝ D 𝐺)‘-𝑥) ↔ -((ℝ D 𝐺)‘-𝑥) = 0) |
| 207 | 150 | negeq0d 10384 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 ↔ -((ℝ D 𝐺)‘-𝑥) = 0)) |
| 208 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
D 𝐺):(𝐴(,)𝐵)⟶ℂ → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
| 209 | 149, 208 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
| 210 | | fnfvelrn 6356 |
. . . . . . . . . . . . . 14
⊢
(((ℝ D 𝐺) Fn
(𝐴(,)𝐵) ∧ -𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺)) |
| 211 | 209, 43, 210 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺)) |
| 212 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢
(((ℝ D 𝐺)‘-𝑥) = 0 → (((ℝ D 𝐺)‘-𝑥) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺))) |
| 213 | 211, 212 | syl5ibcom 235 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺))) |
| 214 | 207, 213 | sylbird 250 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐺)‘-𝑥) = 0 → 0 ∈ ran (ℝ D 𝐺))) |
| 215 | 206, 214 | syl5bi 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺))) |
| 216 | 215 | rexlimdva 3031 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (∃𝑥 ∈ (-𝐵(,)-𝑎)0 = -((ℝ D 𝐺)‘-𝑥) → 0 ∈ ran (ℝ D 𝐺))) |
| 217 | 205, 216 | syl5bi 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (0 ∈ ran (𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥)) → 0 ∈ ran (ℝ D 𝐺))) |
| 218 | 204, 217 | sylbid 230 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (0 ∈ ran (ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) → 0 ∈ ran (ℝ D 𝐺))) |
| 219 | 202, 218 | mtod 189 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ¬ 0 ∈ ran (ℝ D
(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))) |
| 220 | 116 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ) |
| 221 | 143 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ) |
| 222 | 201 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D
𝐺)) |
| 223 | 143, 208 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
| 224 | | fnfvelrn 6356 |
. . . . . . . . . . . . 13
⊢
(((ℝ D 𝐺) Fn
(𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺)) |
| 225 | 223, 224 | sylan 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺)) |
| 226 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢
(((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺))) |
| 227 | 225, 226 | syl5ibcom 235 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺))) |
| 228 | 227 | necon3bd 2808 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D
𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0)) |
| 229 | 222, 228 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0) |
| 230 | 220, 221,
229 | divcld 10801 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ) |
| 231 | | lhop2.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐵)) |
| 232 | 231 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) limℂ 𝐵)) |
| 233 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = -𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘-𝑥)) |
| 234 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑧 = -𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘-𝑥)) |
| 235 | 233, 234 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑧 = -𝑥 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) |
| 236 | 185 | pm2.21d 118 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-𝑥 = 𝐵 → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶)) |
| 237 | 236 | impr 649 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ (𝑥 ∈ (-𝐵(,)-𝑎) ∧ -𝑥 = 𝐵)) → (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)) = 𝐶) |
| 238 | 161, 230,
175, 232, 235, 237 | limcco 23657 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) limℂ -𝐵)) |
| 239 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥ℝ |
| 240 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥
D |
| 241 | | nfmpt1 4747 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)) |
| 242 | 239, 240,
241 | nfov 6676 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))) |
| 243 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑦 |
| 244 | 242, 243 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) |
| 245 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥
/ |
| 246 | | nfmpt1 4747 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)) |
| 247 | 239, 240,
246 | nfov 6676 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))) |
| 248 | 247, 243 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦) |
| 249 | 244, 245,
248 | nfov 6676 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)) |
| 250 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) |
| 251 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥)) |
| 252 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦) = ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) |
| 253 | 251, 252 | oveq12d 6668 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦)) = (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) |
| 254 | 249, 250,
253 | cbvmpt 4749 |
. . . . . . . . 9
⊢ (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) |
| 255 | 128 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥)) |
| 256 | 131 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐹)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥)) |
| 257 | 130, 256 | mpan2 707 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐹)‘-𝑥))‘𝑥) = -((ℝ D 𝐹)‘-𝑥)) |
| 258 | 255, 257 | sylan9eq 2676 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) = -((ℝ D 𝐹)‘-𝑥)) |
| 259 | 155 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥)) |
| 260 | 158 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ -((ℝ D 𝐺)‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥)) |
| 261 | 157, 260 | mpan2 707 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (-𝐵(,)-𝑎) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ -((ℝ D 𝐺)‘-𝑥))‘𝑥) = -((ℝ D 𝐺)‘-𝑥)) |
| 262 | 259, 261 | sylan9eq 2676 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥) = -((ℝ D 𝐺)‘-𝑥)) |
| 263 | 258, 262 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥))) |
| 264 | 201 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ¬ 0 ∈ ran (ℝ D 𝐺)) |
| 265 | 213 | necon3bd 2808 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (¬ 0 ∈ ran (ℝ D
𝐺) → ((ℝ D 𝐺)‘-𝑥) ≠ 0)) |
| 266 | 264, 265 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((ℝ D 𝐺)‘-𝑥) ≠ 0) |
| 267 | 123, 150,
266 | div2negd 10816 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (-((ℝ D 𝐹)‘-𝑥) / -((ℝ D 𝐺)‘-𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) |
| 268 | 263, 267 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥)) = (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) |
| 269 | 268 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑥) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))) |
| 270 | 254, 269 | syl5eq 2668 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥)))) |
| 271 | 270 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) limℂ -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D 𝐹)‘-𝑥) / ((ℝ D 𝐺)‘-𝑥))) limℂ -𝐵)) |
| 272 | 238, 271 | eleqtrrd 2704 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥)))‘𝑦) / ((ℝ D (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥)))‘𝑦))) limℂ -𝐵)) |
| 273 | 79, 81, 84, 86, 88, 133, 160, 188, 195, 200, 219, 272 | lhop1 23777 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐶 ∈ ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) limℂ -𝐵)) |
| 274 | | nffvmpt1 6199 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) |
| 275 | | nffvmpt1 6199 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦) |
| 276 | 274, 245,
275 | nfov 6676 |
. . . . . . . 8
⊢
Ⅎ𝑥(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)) |
| 277 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑦(((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) |
| 278 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥)) |
| 279 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) |
| 280 | 278, 279 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦)) = (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) |
| 281 | 276, 277,
280 | cbvmpt 4749 |
. . . . . . 7
⊢ (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) |
| 282 | | fvex 6201 |
. . . . . . . . . 10
⊢ (𝐹‘-𝑥) ∈ V |
| 283 | 85 | fvmpt2 6291 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐹‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥)) |
| 284 | 26, 282, 283 | sylancl 694 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) = (𝐹‘-𝑥)) |
| 285 | | fvex 6201 |
. . . . . . . . . 10
⊢ (𝐺‘-𝑥) ∈ V |
| 286 | 87 | fvmpt2 6291 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (-𝐵(,)-𝑎) ∧ (𝐺‘-𝑥) ∈ V) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥)) |
| 287 | 26, 285, 286 | sylancl 694 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥) = (𝐺‘-𝑥)) |
| 288 | 284, 287 | oveq12d 6668 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑥 ∈ (-𝐵(,)-𝑎)) → (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥)) = ((𝐹‘-𝑥) / (𝐺‘-𝑥))) |
| 289 | 288 | mpteq2dva 4744 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑥 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑥) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑥))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥)))) |
| 290 | 281, 289 | syl5eq 2668 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) = (𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥)))) |
| 291 | 290 | oveq1d 6665 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑦 ∈ (-𝐵(,)-𝑎) ↦ (((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐹‘-𝑥))‘𝑦) / ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ (𝐺‘-𝑥))‘𝑦))) limℂ -𝐵) = ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) limℂ -𝐵)) |
| 292 | 273, 291 | eleqtrd 2703 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐶 ∈ ((𝑥 ∈ (-𝐵(,)-𝑎) ↦ ((𝐹‘-𝑥) / (𝐺‘-𝑥))) limℂ -𝐵)) |
| 293 | | negeq 10273 |
. . . . . 6
⊢ (𝑥 = -𝑧 → -𝑥 = --𝑧) |
| 294 | 293 | fveq2d 6195 |
. . . . 5
⊢ (𝑥 = -𝑧 → (𝐹‘-𝑥) = (𝐹‘--𝑧)) |
| 295 | 293 | fveq2d 6195 |
. . . . 5
⊢ (𝑥 = -𝑧 → (𝐺‘-𝑥) = (𝐺‘--𝑧)) |
| 296 | 294, 295 | oveq12d 6668 |
. . . 4
⊢ (𝑥 = -𝑧 → ((𝐹‘-𝑥) / (𝐺‘-𝑥)) = ((𝐹‘--𝑧) / (𝐺‘--𝑧))) |
| 297 | 79 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 ∈ ℝ) |
| 298 | | eliooord 12233 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑎(,)𝐵) → (𝑎 < 𝑧 ∧ 𝑧 < 𝐵)) |
| 299 | 298 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑎 < 𝑧 ∧ 𝑧 < 𝐵)) |
| 300 | 299 | simprd 479 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 < 𝐵) |
| 301 | 15, 13 | ltnegd 10605 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝑧 < 𝐵 ↔ -𝐵 < -𝑧)) |
| 302 | 300, 301 | mpbid 222 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝐵 < -𝑧) |
| 303 | 297, 302 | gtned 10172 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → -𝑧 ≠ -𝐵) |
| 304 | 303 | neneqd 2799 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ¬ -𝑧 = -𝐵) |
| 305 | 304 | pm2.21d 118 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (-𝑧 = -𝐵 → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶)) |
| 306 | 305 | impr 649 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ (𝑧 ∈ (𝑎(,)𝐵) ∧ -𝑧 = -𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = 𝐶) |
| 307 | 19, 65, 78, 292, 296, 306 | limcco 23657 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) limℂ 𝐵)) |
| 308 | 15 | recnd 10068 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → 𝑧 ∈ ℂ) |
| 309 | 308 | negnegd 10383 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → --𝑧 = 𝑧) |
| 310 | 309 | fveq2d 6195 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐹‘--𝑧) = (𝐹‘𝑧)) |
| 311 | 309 | fveq2d 6195 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → (𝐺‘--𝑧) = (𝐺‘𝑧)) |
| 312 | 310, 311 | oveq12d 6668 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝑎(,)𝐵)) → ((𝐹‘--𝑧) / (𝐺‘--𝑧)) = ((𝐹‘𝑧) / (𝐺‘𝑧))) |
| 313 | 312 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧)))) |
| 314 | 313 | oveq1d 6665 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) limℂ 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) |
| 315 | 41 | resmptd 5452 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) ↾ (𝑎(,)𝐵)) = (𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧)))) |
| 316 | 315 | oveq1d 6665 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) ↾ (𝑎(,)𝐵)) limℂ 𝐵) = ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) |
| 317 | | fss 6056 |
. . . . . . . . 9
⊢ ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 318 | 93, 53, 317 | sylancl 694 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 319 | 318 | ffvelrnda 6359 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑧) ∈ ℂ) |
| 320 | 55 | ffvelrnda 6359 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑧) ∈ ℂ) |
| 321 | 50 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺) |
| 322 | 55, 57 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐺 Fn (𝐴(,)𝐵)) |
| 323 | | fnfvelrn 6356 |
. . . . . . . . . . 11
⊢ ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑧) ∈ ran 𝐺) |
| 324 | 322, 323 | sylan 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑧) ∈ ran 𝐺) |
| 325 | | eleq1 2689 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑧) = 0 → ((𝐺‘𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺)) |
| 326 | 324, 325 | syl5ibcom 235 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺‘𝑧) = 0 → 0 ∈ ran 𝐺)) |
| 327 | 326 | necon3bd 2808 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺‘𝑧) ≠ 0)) |
| 328 | 321, 327 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑧) ≠ 0) |
| 329 | 319, 320,
328 | divcld 10801 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹‘𝑧) / (𝐺‘𝑧)) ∈ ℂ) |
| 330 | | eqid 2622 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) |
| 331 | 329, 330 | fmptd 6385 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))):(𝐴(,)𝐵)⟶ℂ) |
| 332 | | ioossre 12235 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 333 | 332, 53 | sstri 3612 |
. . . . . 6
⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 334 | 333 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℂ) |
| 335 | | eqid 2622 |
. . . . 5
⊢
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld)
↾t ((𝐴(,)𝐵) ∪ {𝐵})) |
| 336 | | ssun2 3777 |
. . . . . . 7
⊢ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵}) |
| 337 | | snssg 4327 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵}))) |
| 338 | 75, 337 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵}) ↔ {𝐵} ⊆ ((𝑎(,)𝐵) ∪ {𝐵}))) |
| 339 | 336, 338 | mpbiri 248 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈ ((𝑎(,)𝐵) ∪ {𝐵})) |
| 340 | 104 | cnfldtopon 22586 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 341 | 332 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐴(,)𝐵) ⊆ ℝ) |
| 342 | 75 | snssd 4340 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → {𝐵} ⊆ ℝ) |
| 343 | 341, 342 | unssd 3789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ) |
| 344 | 343, 53 | syl6ss 3615 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ) |
| 345 | | resttopon 20965 |
. . . . . . . . 9
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℂ) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵}))) |
| 346 | 340, 344,
345 | sylancr 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵}))) |
| 347 | | topontop 20718 |
. . . . . . . 8
⊢
(((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ (TopOn‘((𝐴(,)𝐵) ∪ {𝐵})) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top) |
| 348 | 346, 347 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top) |
| 349 | | indi 3873 |
. . . . . . . . . 10
⊢ ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵})) |
| 350 | | pnfxr 10092 |
. . . . . . . . . . . . . 14
⊢ +∞
∈ ℝ* |
| 351 | 350 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → +∞ ∈
ℝ*) |
| 352 | 4 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈
ℝ*) |
| 353 | | iooin 12209 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℝ*
∧ +∞ ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*))
→ ((𝑎(,)+∞)
∩ (𝐴(,)𝐵)) = (if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵))) |
| 354 | 36, 351, 34, 352, 353 | syl22anc 1327 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵))) |
| 355 | | xrltnle 10105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝑎 ∈
ℝ*) → (𝐴 < 𝑎 ↔ ¬ 𝑎 ≤ 𝐴)) |
| 356 | 34, 36, 355 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐴 < 𝑎 ↔ ¬ 𝑎 ≤ 𝐴)) |
| 357 | 35, 356 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ¬ 𝑎 ≤ 𝐴) |
| 358 | 357 | iffalsed 4097 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → if(𝑎 ≤ 𝐴, 𝐴, 𝑎) = 𝑎) |
| 359 | | ltpnf 11954 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) |
| 360 | 75, 359 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 < +∞) |
| 361 | | xrltnle 10105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝐵 < +∞ ↔ ¬ +∞ ≤
𝐵)) |
| 362 | 352, 350,
361 | sylancl 694 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐵 < +∞ ↔ ¬ +∞ ≤
𝐵)) |
| 363 | 360, 362 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ¬ +∞ ≤ 𝐵) |
| 364 | 363 | iffalsed 4097 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → if(+∞ ≤ 𝐵, +∞, 𝐵) = 𝐵) |
| 365 | 358, 364 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (if(𝑎 ≤ 𝐴, 𝐴, 𝑎)(,)if(+∞ ≤ 𝐵, +∞, 𝐵)) = (𝑎(,)𝐵)) |
| 366 | 354, 365 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) = (𝑎(,)𝐵)) |
| 367 | | elioopnf 12267 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℝ*
→ (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵))) |
| 368 | 36, 367 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝐵 ∈ (𝑎(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝑎 < 𝐵))) |
| 369 | 75, 82, 368 | mpbir2and 957 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈ (𝑎(,)+∞)) |
| 370 | 369 | snssd 4340 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → {𝐵} ⊆ (𝑎(,)+∞)) |
| 371 | | sseqin2 3817 |
. . . . . . . . . . . 12
⊢ ({𝐵} ⊆ (𝑎(,)+∞) ↔ ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵}) |
| 372 | 370, 371 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ {𝐵}) = {𝐵}) |
| 373 | 366, 372 | uneq12d 3768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (((𝑎(,)+∞) ∩ (𝐴(,)𝐵)) ∪ ((𝑎(,)+∞) ∩ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵})) |
| 374 | 349, 373 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵})) |
| 375 | | retop 22565 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) ∈ Top |
| 376 | 375 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (topGen‘ran (,)) ∈
Top) |
| 377 | | reex 10027 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
| 378 | 377 | ssex 4802 |
. . . . . . . . . . 11
⊢ (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) |
| 379 | 343, 378 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V) |
| 380 | | iooretop 22569 |
. . . . . . . . . . 11
⊢ (𝑎(,)+∞) ∈
(topGen‘ran (,)) |
| 381 | 380 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (𝑎(,)+∞) ∈ (topGen‘ran
(,))) |
| 382 | | elrestr 16089 |
. . . . . . . . . 10
⊢
(((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,)𝐵) ∪ {𝐵}) ∈ V ∧ (𝑎(,)+∞) ∈ (topGen‘ran (,)))
→ ((𝑎(,)+∞)
∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,))
↾t ((𝐴(,)𝐵) ∪ {𝐵}))) |
| 383 | 376, 379,
381, 382 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑎(,)+∞) ∩ ((𝐴(,)𝐵) ∪ {𝐵})) ∈ ((topGen‘ran (,))
↾t ((𝐴(,)𝐵) ∪ {𝐵}))) |
| 384 | 374, 383 | eqeltrrd 2702 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈ ((topGen‘ran (,))
↾t ((𝐴(,)𝐵) ∪ {𝐵}))) |
| 385 | | eqid 2622 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
| 386 | 104, 385 | rerest 22607 |
. . . . . . . . 9
⊢ (((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,))
↾t ((𝐴(,)𝐵) ∪ {𝐵}))) |
| 387 | 343, 386 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) →
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) = ((topGen‘ran (,))
↾t ((𝐴(,)𝐵) ∪ {𝐵}))) |
| 388 | 384, 387 | eleqtrrd 2704 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑎(,)𝐵) ∪ {𝐵}) ∈
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))) |
| 389 | | isopn3i 20886 |
. . . . . . 7
⊢
((((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})) ∈ Top ∧ ((𝑎(,)𝐵) ∪ {𝐵}) ∈
((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵}))) →
((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵})) |
| 390 | 348, 388,
389 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) →
((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵})) = ((𝑎(,)𝐵) ∪ {𝐵})) |
| 391 | 339, 390 | eleqtrrd 2704 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐵 ∈
((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐵})))‘((𝑎(,)𝐵) ∪ {𝐵}))) |
| 392 | 331, 41, 334, 104, 335, 391 | limcres 23650 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → (((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) ↾ (𝑎(,)𝐵)) limℂ 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) |
| 393 | 314, 316,
392 | 3eqtr2d 2662 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → ((𝑧 ∈ (𝑎(,)𝐵) ↦ ((𝐹‘--𝑧) / (𝐺‘--𝑧))) limℂ 𝐵) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) |
| 394 | 307, 393 | eleqtrd 2703 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ (𝐴 < 𝑎 ∧ 𝑎 < 𝐵))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) |
| 395 | 9, 394 | rexlimddv 3035 |
1
⊢ (𝜑 → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘𝑧) / (𝐺‘𝑧))) limℂ 𝐵)) |