![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ge2m1nn | Structured version Visualization version GIF version |
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
Ref | Expression |
---|---|
nn0ge2m1nn | ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0) | |
2 | 1red 10055 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
3 | 2re 11090 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
5 | nn0re 11301 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | 2, 4, 5 | 3jca 1242 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
8 | simpr 477 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁) | |
9 | 1lt2 11194 | . . . . . 6 ⊢ 1 < 2 | |
10 | 8, 9 | jctil 560 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁)) |
11 | ltleletr 10130 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)) | |
12 | 7, 10, 11 | sylc 65 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁) |
13 | elnnnn0c 11338 | . . . 4 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
14 | 1, 12, 13 | sylanbrc 698 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ) |
15 | nn1m1nn 11040 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) |
17 | breq2 4657 | . . . . 5 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1)) | |
18 | 1re 10039 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
19 | 18, 3 | ltnlei 10158 | . . . . . . 7 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
20 | pm2.21 120 | . . . . . . 7 ⊢ (¬ 2 ≤ 1 → (2 ≤ 1 → (𝑁 − 1) ∈ ℕ)) | |
21 | 19, 20 | sylbi 207 | . . . . . 6 ⊢ (1 < 2 → (2 ≤ 1 → (𝑁 − 1) ∈ ℕ)) |
22 | 9, 21 | ax-mp 5 | . . . . 5 ⊢ (2 ≤ 1 → (𝑁 − 1) ∈ ℕ) |
23 | 17, 22 | syl6bi 243 | . . . 4 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ)) |
24 | 23 | adantld 483 | . . 3 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)) |
25 | ax-1 6 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)) | |
26 | 24, 25 | jaoi 394 | . 2 ⊢ ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)) |
27 | 16, 26 | mpcom 38 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 1c1 9937 < clt 10074 ≤ cle 10075 − cmin 10266 ℕcn 11020 2c2 11070 ℕ0cn0 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 |
This theorem is referenced by: nn0ge2m1nn0 11361 wwlksm1edg 26767 clwlkclwwlklem2fv2 26897 clwlkclwwlk 26903 fmtnoprmfac1 41477 logbpw2m1 42361 blenpw2m1 42373 nnolog2flm1 42384 |
Copyright terms: Public domain | W3C validator |